
Global Journal of Mathematical Analysis, 6 (1) (2018) 2-6

Global Journal of Mathematical Analysis
Website: www.sciencepubco.com/index.php/GJMA

doi: 10.14419/gjma.v6i1.8887
Research paper

Inverse obstacle scattering with non-over-determined data
Alexander G. Ramm1*

1 Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
*Corresponding author E-mail: ramm@math.ksu.edu

Abstract

It is proved that the scattering amplitude A(β ,α0,k0), known for all β ∈ S2, where S2 is the unit sphere in R3, and fixed α0 ∈ S2 and k0 > 0,
determines uniquely the surface S of the obstacle D and the boundary condition on S. The boundary condition on S is assumed to be the
Dirichlet, or Neumann, or the impedance one. The uniqueness theorem for the solution of multidimensional inverse scattering problems with
non-over-determined data was not known for many decades. A detailed proof of such a theorem is given in this paper for inverse scattering
by obstacles for the first time. It follows from our results that the scattering solution vanishing on the boundary S of the obstacle cannot have
closed surfaces of zeros in the exterior of the obstacle different from S. To have a uniqueness theorem for inverse scattering problems
with non-over-determined data is of principal interest because these are the minimal scattering data that allow one to uniquely recover the
scatterer.
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1. Introduction

The uniqueness theorems for the solution of multidimensional in-
verse scattering problems with non-over-determined scattering data
were not known since the origin of the inverse scattering theory,
which goes, roughly speaking, to the middle of the last century. A
detailed proof of such a theorem is given in this paper for inverse
scattering by obstacles for the first time. To have a uniqueness theo-
rem for inverse scattering problems with non-over-determined data
is of principal interest because these are the minimal scattering data
that allow one to uniquely recover the scatterer. In [8]–[12] such
theorems are proved for the first time for inverse scattering by po-
tentials. The result, presented in this paper will be presented in the
author’s monograph [11], where the ideas of its proof were outlined,
see also [1]. In this paper the arguments are given in detail, parts of
the presentation in [11] are used verbatim, two new theorems (Theo-
rems 2 and 3) are formulated and proved, and it is pointed out that
from these results it follows that the scattering solution vanishing on
the boundary S of the obstacle cannot have closed surfaces of zeros
different from S in the exterior of the obstacle. The results of this
paper will be presented in [11], Chapter 2. Since these results solve
the problem that has been unsolved for many decades, we think that
their publication in a separate paper is warranted.

The data is called non-over-determined if it is a function of the
same number of variables as the function to be determined from
these data. In the case of the inverse scattering by an obstacle the
unknown function describes the surface of this obstacle in R3, so it
is a function of two variables. The non-over-determined scattering
data is the scattering amplitude depending on a two-dimensional
vector. The exact formulation of this inverse problem is given below.

Let us formulate the problem discussed in this paper. Let D ⊂ R3

be a bounded domain with a connected C2−smooth boundary S,

D′ := R3 \D be the unbounded exterior domain and S2 be the unit
sphere in R3. The smoothness assumption on S can be weakened.
Consider the scattering problem:

(∇2 + k2)u = 0 in D′, Γ ju|S = 0, u = eikα·x + v, (1)

where the scattered field v satisfies the radiation condition:

vr− ikv = o
(1

r

)
, r := |x| → ∞. (2)

Here k > 0 is a constant called the wave number and α ∈ S2 is a
unit vector in the direction of the propagation of the incident plane
wave eikα·x. The boundary conditions are assumed to be either the
Dirichlet (Γ1), or Neumann (Γ2), or impedance (Γ3) type:

Γ1u := u, Γ2u := uN , Γ3u := uN +hu, (3)

where N is the unit normal to S pointing out of D, uN is the nor-
mal derivative of u on S, h = const, Imh ≥ 0, h is the boundary
impedance, and the condition Imh≥ 0 guarantees the uniqueness of
the solution to the scattering problem (1)-(2).
The scattering amplitude A(β ,α,k) is defined by the following for-
mula:

v = A(β ,α,k)
eikr

r
+o
(1

r

)
, r := |x| → ∞,

x
r
= β , (4)

where α,β ∈ S2, β is the direction of the scattered wave, α is the
direction of the incident wave.
For a bounded domain D one has o( 1

r ) = O( 1
r2 ) in formula (4).

The function A(β ,α,k), the scattering amplitude, can be measured
experimentally. Let us call it the scattering data. It is known (see [2],
p.25) that the solution to the scattering problem (1)-(2) does exist
and is unique.
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The inverse scattering problem (IP) consists of finding S and the
boundary condition on S from the scattering data.
M.Schiffer was the first to prove in the sixties of the last century that
if the boundary condition is the Dirichlet one then the surface S is
uniquely determined by the scattering data A(β ,α0,k) known for a
fixed α = α0, all β ∈ S2, and all k ∈ (a,b), 0≤ a < b.
M. Schiffer did not publish his proof. This proof can be found, for
example, in [2], p.85, and the acknowledgement of M.Schiffer’s
contribution is on p.399 in [2].
A. G. Ramm was the first to prove that the scattering data A(β ,α,k0),
known for all β in a solid angle, all α in a solid angle and a fixed
k = k0 > 0 determine uniquely the boundary S and the boundary
condition on S. This condition was assumed of one of the three types
Γ j, j = 1,2 or 3, (see [2], Chapter 2, for the proof of these results).
By subindex zero fixed values of the parameters are denoted, for
example, k0, α0. By a solid angle in this paper an open subset of S2

is understood.
In [2], p.62, it is proved that for smooth bounded obstacles the
scattering amplitude A(β ,α,k) is an analytic function of β and α on
the non-compact analytic variety
M := {z|z ∈ C3,z · z = 1}, where z · z := ∑

3
m=1 z2

m. The unit sphere
S2 is a subset of M. If A(β ,α,k) as a function of β is known on an
open subset of S2, it is uniquely extended to all of S2 (and to all of
M) by analyticity. The same is true if A(β ,α,k) as a function of α

is known on an open subset of S2. By this reason one may assume
that the scattering amplitude is known on all of S2 if it is known in a
solid angle, that is, on open subsets of S2 as a function of α and β .
In papers [5] and [6] a new approach to a proof of the uniqueness
theorems for inverse obstacle scattering problem (IP) was given.
This approach is used in our paper.
In paper [4] the uniqueness theorem for IP with non-over-determined
data was proved for strictly convex smooth obstacles. The proof
in [4] was based on the location of resonances for a pair of such
obstacles. These results are technically difficult to obtain and they
hold for two strictly convex smooth obstacles with a positive distance
between them.
The purpose of this paper is to prove the uniqueness theorem for
IP with non-over-determined scattering data for arbitrary S. For
simplicity the boundary is assumed C2− smooth. By the boundary
condition any of the three conditions Γ j are understood below, but
the argument is given for the Dirichlet condition for definiteness.

Theorem 1. The surface S and the boundary condition on S are
uniquely determined by the data A(β ) known in a solid angle.

Theorem 2. If A1(β ) = A2(β ) for all β in a solid angle, then it is
not possible that D1 6= D2 and D1∩D2 = /0.

Theorem 3. If A1(β ) = A2(β ) for all β in a solid angle, then it is
not possible that D1 6= D2 and D1 ⊂ D2.

Corollary. It follows from Theorems 2 and 3 that the solution to
problem (1)– (2) (the scattering solution) cannot have a closed
surface of zeros except the surface S, the boundary of the obstacle.
In Section 2 some auxiliary material is formulated and Theorems 1,
2, 3 are proved. The Corollary is an immediate consequence of these
theorems. Theorem 1–3 and the Corollary are our main results.
Let us explain the logic of the proof of Theorem 1. Its proof is based
on the assumption that there are two different obstacles, D1 with
the surface S1 and D2 with the surface S2, that generate the same
non-over-determined scattering data. This assumption leads to a
contradiction which proves that S1 = S2. If it is proved that S1 = S2,
then the type of the boundary condition (of one of the three types
(4)) can be uniquely determined by calculating u or uN

u on S.
There are three cases to consider. The first case, when S1 intersects
S2, is considered in Theorem 1. The second case, when S1 does not
intersect S2 and does not lie inside S2, is considered in Theorem2.

The third case, when S1 does not intersect S2 and it lies inside S2 is
considered in Theorem 3.
Our results show that these cases cannot occur if the non-over-
determined scattering data corresponding to S1 and S2 are the same.
They also show that a scattering solution cannot have a closed surface
of zeros except S.

2. Proofs of Theorems 1, 2 and 3

Let us formulate some lemmas which are proved by the author,
except for Lemma 3, which was known. Lemma 3 was proved first
by V.Kupradze in 1934 and then by I.Vekua, and independently
by F.Rellich, in 1943, see a proof of Lemma 3 in the monograph
[2], p.25, and also the references there to the papers of V.Kupradze,
I.Vekua, and F.Rellich). Another proof of Lemma 3, based on a new
idea, is given in paper [3].
Denote by G(x,y,k) the Green’s function corresponding to the scat-
tering problem (1)-(2). The parameter k > 0 is assumed fixed in what
follows. For definiteness we assume below the Dirichlet boundary
condition, but our proof is valid for the Neumann and impedance
boundary conditions as well. If there are two surfaces Sm, m = 1,2,
we denote by Gm the corresponding Green’s functions of the Dirich-
let Helmholtz operator in D′m.
Lemma 1. ([2], p. 46) One has:

G(x,y,k) = g(|y|)u(x,α,k)+O
( 1
|y|2
)
,

|y| → ∞,
y
|y|

=−α.
(5)

Here g(|y|) := eik|y|

4π|y| , u(x,α,k) is the scattering solution, that is, the

solution to problem (1)-(2), O
(

1
|y|2
)

is uniform with respect to α ∈

S2, and the notation γ(r) := 4πg(r) = eik|r|

|r| is used below.
The solutions to equation (1) have the unique continuation property:
If u solves equation (1) and vanishes on a set D̃ ⊂ D′ of positive
Lebesgue measure, then u vanishes everywhere in D′.
Formula (5) holds if y is replaced by the vector−τα +η , where τ >
0 is a scalar and η is an arbitrary fixed vector orthogonal to α ∈ S2,
η ·α = 0. If η ·α = 0 and y =−τα +η , then |y|

τ
= 1+O( 1

|τ|2 ) as
τ→∞. The relation |y| →∞ is equivalent to the relation τ→∞, and
g(|y|) = g(τ)(1+O( 1

|τ| )).

Denote by D12 := D1 ∪D2, D′12 := R3 \D12, S12 := ∂D12, S̃1 :=
S12 \ S2, that is, S̃1 does not belong to D2, B′R := R3 \BR, BR :=
{x : |x| ≤ R}. The number R is sufficiently large, so that D12 ⊂ BR.
Let S12 denote the intersection of S1 and S2. This set may have
positive two-dimensional Lebesgue measure or it may have two-
dimensional Lebesgue measure zero. In the first case let us denote
by L⊂ S12 the line such that in an arbitrary small neighborhood of
every point s ∈ L there are points of S1 and of S2. The line L has
two-dimensional Lebesgue measure equal to zero. Denote by Sε the
subset of points on S12 the distance from which to L is less than ε .
The two-dimensional Lebesgue measure mε of Sε tends to zero as
ε → 0.
A part of our proof is based on a global perturbation lemma, Lemma
2 below, which is proved in [6], see there formula (4). A similar
lemma is proved for potential scattering in [7], see there formula
(5.1.30). For convenience of the readers a short proof of Lemma 2 is
given below.
Lemma 2. One has:

4π[A1(β ,α,k)−A2(β ,α,k)] =
∫

S12

[u1(s,α,k)u2N(s,−β ,k)

−u1N(s,α,k)u2(s,−β ,k)]ds,
(6)

where the scattering amplitude Am(β ,α,k) corresponds to obstacle
Sm, m = 1,2.
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Proof. Denote by Gm(x,y,k) the Green’s function of the Dirichlet
Helmholtz operator in D′m, m = 1,2. Using Green’s formula one
obtains

G1(x,y,k)−G2(x,y,k)] =
∫

S12

[G1(s,x,k)G2N(s,y,k)

−G1N(s,x,k)G2(s,y,k)]ds.
(7)

Pass in (7) to the limit y→ ∞, y
|y| = β , and use Lemma 1 to get:

u1(x,−β ,k)−u2(x,−β ,k)] =
∫

S12

[G1(s,x,k)u2N(s,−β ,k)

−G1N(s,x,k)u2(s,−β ,k)]ds.
(8)

Use the formula

um(x,−β ,k) = e−ikβ ·x +Am(−α,−β ,k)
eik|x|

|x|
+O(

1
|x|2

),

|x| → ∞,
x
|x|

=−α,

(9)

pass in equation (8) to the limit x→ ∞, x
|x| =−α , use Lemma 1 and

get

4π[A1(−α,−β ,k)−A2(−α,−β ,k)] =∫
S12

[u1(s,α,k)u2N(s,−β ,k)−u1N(s,α,k)u2(s,−β ,k)]ds.
(10)

The desired relation (6) follows from (10) if one recalls the known
reciprocity relation

A(−α,−β ,k) = A(β ,α,k),

which is proved, for example, in [2], pp. 53-54.
Lemma 2 is proved. 2

Remark 1. In (7) Green’s formula is used. The surface S12 may be
not smooth because it contains the intersection S12 of two smooth
surfaces S1 and S2, and this intersection may be not smooth. How-
ever, the integrand in (7) is smooth up to the boundary S12 and is
uniformly bounded because x and y belong to the exterior of D12.
The integral (7) is defined as the limit of the integral over S12 \Sε as
ε→ 0 (where Sε was defined above Lemma 2). This limit does exist
since mε , the two-dimensional Lebesgue measure of Sε , tends to
zero as ε → 0 while the integrand is smooth and uniformly bounded
on S12. Consequently, the integral (7) is well defined. This argument
also shows that formula (10) is valid for the domain D12 if the sur-
faces S1 and S2 are smooth and the functions u1 and u2 are smooth
and uniformly bounded up to S1 and S2 respectively.

Lemma 3. ([2], p. 25) If limr→∞

∫
|x|=r |v|2ds = 0 and v satisfies the

Helmholtz equation (1) in B′R, then v = 0 in B′R.

The following useful lemma is formulated below and is used in our
proof. Its proof is given also in the monograph [11].
Lemma 4. (lifting lemma) If A1(β ,α,k) = A2(β ,α,k) for all β ,α ∈
S2, then G1(x,y,k) = G2(x,y,k) for all x,y ∈ D′12. If A1(β ,α0,k) =
A2(β ,α0,k) for all β ∈ S2 and a fixed α = α0, then G1(x,y0,k) =
G2(x,y0,k) for all x ∈ D′12 and y0 = −α0τ +η , where τ > 0 is a
number and η is an arbitrary fixed vector orthogonal to α0, α0 ·η =
0.

Proof of Lemma 4. The function

w := w(x,y) := G1(x,y,k)−G2(x,y,k) (11)

satisfies equation (1) in D′12 as a function of y and also as a function
of x, and w satisfies the radiation condition as a function of y and
also as a function of x. By Lemma 1 one has:

w = g(|y|)[u1(x,α,k)−u2(x,α,k)]+O
( 1
|y|2
)
,

|y| → ∞, α =− y
|y|

.
(12)

Using formulas (1) and (4) one gets:

u1(x,α,k)−u2(x,α,k) = γ(|x|)[A1(β ,α,k)−A2(β ,α,k)]+

O
( 1
|x|2
)
, |x| → ∞, β =

x
|x|

,
(13)

because, for m = 1,2 and γ(|x|) := eik|x|

|x| , one has:

um(x,α,k) = eikα·x +Am(β ,α,k)γ(|x|)+O
( 1
|x|2
)
,

|x| → ∞, β =
x
|x|

.
(14)

If A1(β ,α,k) = A2(β ,α,k), then equation (13) implies

u1(x,α,k)−u2(x,α,k) = O
( 1
|x|2
)
. (15)

Since u1(x,α,k)−u2(x,α,k) solves equation (1) in D′12 and relation
(15) holds, it follows from Lemma 3 that u1(x,α,k) = u2(x,α,k)
in B′R. By the unique continuation property for the solutions to the
Helmholtz equation (1), one concludes that u1 = u2 everywhere in
D′12 and even in D12 := (D1 ∩D2)

′. Consequently, formula (12)
yields

w(x,y) = O
( 1
|y|2
)
, |y|> |x| ≥ R. (16)

Since the function w solves the homogeneous Helmholtz equation
(1) in the region |y| > |x| ≥ R, it follows by Lemma 3 that w =
w(x,y) = 0 in this region and, by the unique continuation property,
w = 0 everywhere in D′12. Thus, the first part of Lemma 4 is proved.
Its second part deals with the case when α = α0, where α0 is fixed.
Let us prove that if

A1(β ) := A1(β ,α0,k) = A2(β ,α0,k) := A2(β ) ∀β ∈ S2, (17)

then

w(x,y0) = 0, (18)

where x ∈ D′12 is arbitrary, y0 =−τα0 +η , α0 ∈ S2 is fixed, τ > 0
is a number and η is an arbitrary fixed vector orthogonal to α0,
η ·α0 = 0.
From (17) it follows that u1(x,α0) = u2(x,α0) for all x ∈ D′12 and
even in D12 := (D1 ∩D2)

′. Let us derive a contradiction from
the assumption that (18) is not valid, or, which is equivalent, that
S1 6= S2.
The Green’s formula yields G1(x,y0) = g(x,y0) −∫

S1
g(x,s)G1N(s,y0)ds, where g(x,y0) = eik|x−y0 |

4π|x−y0| , and a simi-
lar formula holds for G2 with the integration over S2. Consequently,

G1(x,y0)−G2(x,y0) =
∫

S2

g(s,x)G2N(s,y0)ds−∫
S1

g(s,x)G1N(s,y0)ds,
(19)

where ds is the surface area element.
Let y0→∞, y0/|y0|=−α0 and take into account that if u1(x,α0) =
u2(x,α0) for all x∈D′12 then u1(x,α0)= u2(x,α0) := u(x,α0) for all
x ∈D12 := (D1∩D2)

′ by the unique continuation principle. There-
fore, equation (19) and Lemma 1 yield∫

S2

g(s,x)uN(s,α0)ds =
∫

S1

g(s,x)uN(s,α0)ds, ∀x ∈D12. (20)

The right side of (20) is an infinitely smooth function when x passes
the part of S2 which lies outside of D1 while the normal derivative
of the left side has a jump uN(s,α0) in such a process. This is a
contradiction unless uN(s,α0) = 0 on S2. However, u = 0 on S2
and if uN(s,α0) = 0 on S2 then, by the uniqueness of the solution
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to the Cauchy problem for the Helmholtz equation, one concludes
that u = 0 in D′2. This is impossible since limx→∞ |u(x,α0)| = 1.
This contradiction proves that D1 = D2 := D, S1 = S2 := S, and
G1(x,y0) = G2(x,y0) := G(x,y0), where G is the Green’s function
of the Dirichlet Helmholtz operator for the domain D′, and G satisfies
the radiation condition at infinity.
Thus, the proof of the relation G1(x,y0) = G2(x,y0) is completed
and the second part of Lemma 4 is proved.
Lemma 4 is proved. 2

Lemma 4 is used for a proof of Theorem 1.
In Remark 2 (see below) a different proof of Theorems 1 and 3 is
given.

Lemma 5. One has

lim
x→t

G2N(x,s,k) = δ (s− t), t ∈ S2, (21)

where δ (s− t) denotes the delta-function on S2 and x→ t denotes a
limit along any straight line non-tangential to S2.
Proof of Lemma 5. Let f ∈C(S2) be arbitrary. Consider the follow-
ing problem: W solves equation (1) in D′2, W satisfies the boundary
condition W = f on S2, and W satisfies the radiation condition. The
unique solution to this problem is given by the Green’s formula:

W (x) =
∫

S2

G2N(x,s) f (s)ds. (22)

Since limx→t∈S2 w(x) = f (t) and f ∈C(S2) is arbitrary, the conclu-
sion of Lemma 5 follows.
Lemma 5 is proved. 2

Let us point out the following implications:

G(x,y,k)→ u(x,α,k)→ A(β ,α,k), (23)

which hold by Lemma 1 and formula (14). The first arrow means
that the knowledge of G(x,y,k) determines uniquely the scattering
solution u(x,α,k) for all α ∈ S2, and the second arrow means that
the scattering solution u(x,α,k) determines uniquely the scattering
amplitude A(β ,α,k).
The reversed implications also hold:

A(β ,α,k)→ u(x,α,k)→ G(x,y,k). (24)

These implications follow from Lemmas 1, 3 , 4 and formula (14).
Let us explain why the knowledge of u(x,α,k) determines uniquely
G(x,y,k). If there are two Gm, m = 1,2, to which the same u(x,α,k)
corresponds, then w := G1−G2 solves equation (1) in D′12 and, by
Lemma 1, w = O( 1

|x|2 ). Thus, by Lemma 3, w = 0, so G1 = G2

in D′12. This implies, as in the proof of Theorem 1 below, that
D1 = D2 := D.
Similar implications for α = α0 fixed are formulated after the proof
of Theorem 1.

Proof of Theorem 1. If A1(β ) = A2(β ) for all β in a solid angle,
then the same is true for all β ∈ S2, so one may assume that A1(β ) =
A2(β ) for all β ∈ S2.
Let us assume that A1(β ) = A2(β ) for all β but S1 6= S2. We want
to derive from this assumption a contradiction. This contradiction
will prove that the assumption S1 6= S2 is false, so S1 = S2.
If A1(β ) = A2(β ) for all β ∈ S2, then Lemma 4 yields the following
conclusion:

G1(x,y0) = G2(x,y0), ∀x ∈ D′12, (25)

where k > 0 and α0 ∈ S2 are fixed and y0 = −α0τ +η , τ > 0, η ·
α0 = 0, η is an arbitrary fixed vector orthogonal to α0. This is the
key point in the proof of Theorem 1. For definiteness we assume
in the proof of Theorem 1 that S1 intersects S2. The other cases are
considered in Theorems 2 and 3.

If S1 6= S2 then one gets a contradiction: let y0 approach a point
t ∈ S2 which does not belong to S1 along the ray −τα0 +η . Then,
on one hand, G1(x, t) = G2(x, t) = 0 for all x ∈ D′12, and, on the
other hand, G1(x, t) = O( 1

|x−t| ), so that |G1(x, t)| → ∞ as x→ t.
This contradiction proves that S1 = S2.
If S1 = S2 := S then D1 = D2 := D and u1(x,α0,k) = u2(x,α0,k) :=
u(x,α0,k) for x∈D′, and, consequently, the boundary condition on S
is uniquely determined: if u|S = 0, then one has the Dirichlet bound-
ary condition Γ1, otherwise calculate uN

u on S. If this ratio vanishes,
then one has the Neumann boundary condition Γ2, otherwise one has
the impedance boundary condition Γ3, and the boundary impedance
h =− uN

u on S, so the boundary condition is uniquely determined by
the non-over-determined scattering data.
Theorem 1 is proved. 2

One may give different proofs of Theorem 1. For example, if S1 6= S2
and S1 intersects S2 then, by analytic continuation, the scattering
solutions um(x,α0), m = 1,2, admit analytic continuation to the
exterior of the domain D12 = D1∩D2. The boundary of this domain
has edges. If a point t belongs to an edge, then the gradient of the
solution to the homogeneous Helmholtz equation is singular when
x→ t. On the other hand, this t belongs to a smooth boundary S1 or
S2, so that the above gradient has to be smooth. This contradiction
proves that S1 = S2 in the case when S1 intersects S2.
Let us formulate the implication similar to the one given before the
proof of Theorem 1. If y = y0 = −τα0 +η , τ > 0 is an arbitrary
number, α0 is a fixed unit vector, and η is an arbitrary fixed vector
orthogonal to α0, then

G(x,y0,k)→ u(x,α0,k)→ A(β ,α0,k), (26)

where α0 is a free unit vector, that is, a vector whose initial point is
arbitrary.
The reversed implications also hold:

A(β ,α0,k)→ u(x,α0,k)→ G(x,y0,k). (27)

The first of these implications follows from Lemma 3 and the asymp-
totic of the scattering solution, while the second follows from Lem-
mas 1 and 4.

We have assumed implicitly that D1 and D2 have a common part but
none of them is a subset of the other, that is, S1 intersects S2. Let us
discuss the two remaining possibilities.
The first possibility is that D1 6= D2 and D1∩D2 = /0.

Proof of Theorem 2. If A1(β ) = A2(β ) in a solid angle, then
A1(β ) = A2(β ) in S2. This implies that u1(x,α0) = u2(x,α0)
in D′12. Since u1(x,α0) is defined in D2 and satisfies there the
Helmholtz equation (1), the unique continuation property implies
that u2(x,α0,k) is defined in D2 and satisfies there the Helmholtz
equation. Consequently, u2(x,α0,k) is defined in R3, it is a smooth
function that satisfies in R3 the Helmholtz equation, and the same
is true for u1(x,α0,k). Therefore the scattered parts v1 and v2 of
the scattering solutions u1 and u2 satisfy the Helmholtz equation (1)
in R3 and the radiation condition. A function satisfying the radi-
ation condition and the Helmholtz equation in R3 is equal to zero
in R3. Therefore, v1 = v2 = 0 and u1 = u2 = eikα0·x in R3. This is
impossible since um = 0 on Sm, m = 1,2, while eikα0·x 6= 0 on Sm.
Theorem 2 is proved. 2

The second possibility is D1 6= D2 and D1 ⊂ D2.

Proof of Theorem 3.
One proves Theorem 3 using Lemma 4. By Lemma 4 one has

G1(x,y0) = G2(x,y0) ∀x ∈ D′2, y0 =−τα0 +η ,

y0 ∈ D′2, η ·α0 = 0, τ ∈ (0,∞).
(28)
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Note that

lim
x→y0
|G1(x,y0)|= ∞ (29)

since both x and y0 belong to D′1 and are away from S1 if D1 6= D2.
On the other hand, if y0 ∈ S2, then G2(x,y0) = 0 for all x ∈ D2,
x 6= y0 and

lim
x→y0
|G2(x,y0)|= 0. (30)

This is a contradiction unless D1 = D2.
Theorem 3 is proved. 2

It follows from Theorems 1, 2 and 3 that Corollary holds: the solution
to problem (1)– (2) (the scattering solution) cannot have a closed
surface of zeros except the surface S, the boundary of the obstacle.
Remark 2. Let us give a new proof of Theorems 1 and 3. Assume
first that D1 ⊂ D2, so that assumptions of Theorem 3 hold. Denote
by u the analytic continuation of u2 into D2 \D1. This u is equal to
u1 in D′1. Green’s formula yields

u(x) =
∫

S2

g(x,s)uN(s)ds−
∫

S1

g(x,s)uN(s)ds,

x ∈ D2 \D1.

(31)

u = u0−
∫

S2

g(x,s)uN(s)ds, x ∈ D′2, (32)

u = u0−
∫

S1

g(x,s)uN(s)ds, x ∈ D′1. (33)

From (31) and (33) one derives

0 = u0−
∫

S2

g(x,s)uN(s)ds, x ∈ D2 \D1. (34)

Denote I+ :=
∫

S2
g(x,s)uN(s)ds, x ∈ D2 \ D1 and I− :=∫

S2
g(x,s)uN(s)ds, x ∈ D′2. The functions u and u0 are uniquely

extended from D′2 into D2 \D1 and integral I− is extended uniquely
from D′2 into D2 \D1 as integral I+. Equations (34) can be written
as I+ = u0 in D2 \D1. Equation (32) can be uniquely extended into
D2 \D1 and written there as u = u0− I+ = 0. Therefore u = 0 in
D2 \D1. This is a contradiction since u is the scattering solution
in D′1, it solves the elliptic Helmholtz equation in D′1 and if u = 0
in D2 \D1 then u = 0 everywhere in D′1, which is impossible since
|u| → 1 as |x| → ∞.
If the assumptions of Theorem 1 hold, then the argument is similar.
The roles of S2 and S1 are played respectively by S12, the boundary
of D12, and the boundary of the intersection D12 = D1∩D2. 2
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