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Abstract 

 

Instability of themocovection in a multi-component fluid has wide range of applications in ionospheric, geothermal and 

industries. In this analysis, the effect of rotation and vertical anisotropy on Soret-driven thermoconvective instability in 

a ferrofluid has been studied. The fluid layer is assumed to be horizontal and is heated from below and salted from 

above. In momentum equation, the effect of both substantial derivatives and coriolis terms are considered. The resulting 

eigen value problem is solved using Brinkman model. A linear stability analysis is used for both stationary and 

oscillatory instabilities for different parameters for which normal mode technique is applied. The effect of rotation tends 

to stabilize the system and anisotropy and Soret effects tend to destabilize the system. 
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1 Introduction 

One of the most important features of colloidal suspension of magnetic nanoparticles, known as ferrofluids, is the 

relative change of their viscosity with changing magnetic field. Magnetic fluid has been used in a wide variety of 

applications for many years by NASA in 1960s for controlling liquids in space, damping system, avionics and ball 

bearings, lubrications.      

Numerous ferrofluids have been prepared tailor-made for requisite applications industries. One of the applications of 

ferromagnetic fluid is the sealing of rotating shafts and the benefit is used in various technical applications like sealing 

of hard disk drives, rotating X-ray tubes or rotating vacuum feed-through where reliable sealing through low friction is 

required. In electrical and electronic industries, ferrofluid is used to improve hi-fi characteristic loud speakers, fluid as 

transformer coolants and in miniaturizing inductive components, which for a long time eluded the electrical industries. 

The use of magnetic fluids as a heat transfer medium that may be magnetically most important branch of manufacturing. 

In the field of biomedicine, the application of magnetic fluid for the purpose of cancer treatment either by hyperthermia, 

using the change of magnetization in an air condition field to heat the tissue, or by targeting are obviously challenging 

possibilities.     

An authoritative introduction to excellent reviews of this fascinating subject has been discussed in monograph by 

Rosensweig [1] and the study of the effect of magnetization yields interesting information. Usually, this magnetization 

is a function of magnetic field, the temperature and density of the fluid. This in presence of a gradient of magnetic field 

gives convection in ferromagnetic fluids which is known as ferroconvection and is similar to Bénard convection in 

ordinary fluids (Chandrasekhar [2]). Convective instability of a ferromagnetic fluid for a fluid layer heated from below 

in the presence of uniform vertical magnetic field has been considered by Finlayson [3]. Lalas and Carmi [4] studied 

thermoconvective instability without considering buoyancy effects.    

Ferrofluids are single-magnetic-domain, two-phase three-component fluids, where the core stands for the single domain, 

core and carrier fluids stands for the two phases, and core, surfactant and carrier fluids stands for three component. 

Attempts have been made to analyze convective and conductive heat transports in strongly magnetized fluids [5]. The 

Soret driven ferrothermohaline convective system is a double diffusive convective system. This convective instability in 

multi-component [6] fluids has various applications in heat and mass transfer.   During the last four 

decades there has been a great deal of effort lead to by many researchers on the study of effect of rotation and 

anisotropy on ferroconvection [7-12] for single component fluid. The anisotropy of viscosity of a ferrofluid with 
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magnetically interacting particles which are able to form structures in an applied magnetic field has been investigated 

by Gerch-Noritzsch et al. [13]. The effect of Coriolis force on the onset of ferromagnetic convection in a rotating 

horizontal ferrofluid saturated a porous layer in the pressure of a uniform vertical magnetic field studied by 

Shivakumara et al. [14]. Sunil et al. [15] investigated theoretically the effect of rotating ferromagnetic fluid heated from 

below in a porous medium in the presence of dust particles.         

In double diffusive convection, the effect of rotation on a layer of a ferromagnetic fluid permeated with dust particles 

heated and soluted from below has been studied by Sunil et al. [16]. Sunil et al. [17] considered the double diffusive 

convection in magnetized ferrofluid with internal angular momentum in the presence of rotation.  Malashetty et al. [18] 

investigated the double diffusive convection in a fluid saturated rotating sparsely packed porous layer. This 

investigation is used by Brinkman and thermal non-equilibrium models. Malashetty and Rajashekar Heera [19] studied 

the effect of rotation and anisotropy on the onset of double diffusive convection. Benano-Melly et al. [20] studied to 

reproduce the Soret number measurement experiments in porous media considered thermal and solutal convections. 

Sekar et al. [21, 22] investigated the presence of rotation on ferrothermohaline convection for two component fluid with 

existence and non-existence of a porous medium. Sekar et al. [23] and Vaidyanathan et al. [24] have studied the 

presence of coriolis effect on Soret-driven ferrothermohaline convection and extended to a porous medium for multi-

component fluid. More recently, Sekar et al. [25] studied the linear analytical study of Soret-driven ferrothermohaline 

convection in an anisotropic porous medium of sparse particle suspension.      

In the present investigation, the treatment of rotation on Soret-driven ferrothermo convective instability of multi-

component fluid heated from below and salted from above for different range of anisotropic porous medium has been 

analysed for a linear stability analysis. 

 

2 Mathematical formulation of problem 

An infinitely spread horizontal layer of  Boussinesq magnetic fluid of thickness ‘d ’ saturating a sparsely rotating 

anisotropic porous medium in the presence of transverse applied magnetic field heated from below and salted from 

above is considered. The entire system is assumed to be rotating in the vertical direction of z–axis, with uniform right 

handed angular velocity Ω . The anisotropy and isotropy are considered along vertical and horizontal directions 

respectively. The temperature and salinity at / 2z dm are 0 ( ) / 2T T   and 0 ( ) / 2S Sm  respectively. Both boundaries 

are taken to be free and perfect conductors of heat and salt.  

The momentum equation for a Brinkman model is  

  2 20

0 0( / . ) . 2 ( ) (| | )
2

t p
k


                  q q g HB q q Ω q Ω r

          

                                     (1) 

The continuity equation for Boussinesq fluid is  
. 0 q                                                                                                                                                                               (2) 

The temperature equation for an incompressible fluid given Sekar et al. [8] is 

    2

0 , 0 1, ,
. / ( / ) / . ( / )v H o v H v H

C T dT dt T T d dt K T            
 

H M M H                                                       (3) 

The mass flux equation is given by 
2 2

0 ( /  ) S Tt S K S S T       q      (4) 

where 0 ,H 1, / , , , , , , , , , , , , ,  , , ,v SD Dt t p k C T K K S  q H B g M  and TS  are the density, substantial derivative, 

velocity, time, magnetic field, magnetic induction, pressure, acceleration due to gravity, dynamic viscosity (constant), 

angular velocity vector, permeability of the porous medium, heat capacity at constant volume and magnetic field, 

magnetization, temperature, thermal conductivity, concentration diffusivity, salinity, viscous dissipation factor 

containing second-order terms in velocity and Soret coefficient, respectively.      

Further analysis has been carried out using the techniques of [3] and [21]-[25]. The magnetic equation of state is 

linearised about the magnetic field 0H , the average temperature 0T and the average salinity 0S  become 

00 0 0 2(H ) ( ) ( ),M H K T T K S S      M                                                                                          (5) 

where 
0 0,( M / )H TH    is the magnetic susceptibility, 

0 0,( M / )H TK T    is the pyromagnetic coefficient 

and
0 02 ,( M / )H TK S   is the salinity magnetic coefficient.                 

The Maxwell’s equations for non-conducting fluids are 
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. 0, B
 

0 H             (6a,b) 

Also, B  and H are related by 

 0 B B H
      

(7) 

The magnetization is depends on the magnitude of magnetic field, temperature and salinity. Using Maxwell’s equation 

for non-conducting fluids, the magnetization is written as 
 

= ( , , ).M H T S
H

H
M                (8) 

The density equation of state for a two-component fluid [23]-[25] is         

0 00
[1 ( ) ( )]St T T S S                                    (9) 

where t is the thermal expansion coefficient and S is the solute analog of t . 

The basic state is assumed to be quiescent state. Taking the components of magnetization and magnetic field in the 

quiescent state as [0, 0, 0( )M z ] and [0, 0, 0( )H z ], we obtain the following basic states quantities are  
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1 1 1 1

b b t b S b b t t s s

b b b b
b b

q T z T z S z S z p p z z

K T T K S S K T T K S S
H z H k M z M k

       

   

         


       
                

r

       

      (10) 

The basic state quantities are perturbed by a small thermal disturbance. Let the components of the perturbed magnetic 

field and magnetization be 
' ' '
1 2 0 3( , , ( ) )H H H z H and 

' ' '
1 2 0 3( , , ( ) ),M M M z M respectively.   The 

perturbed temperature and salinity are taken to be 0 'tT T z T    and 0 'tS S z S   respectively, where primed 

quantities denoted the perturbation.      

Using linear theory, the Eqs. (5) and (7) yields  

 ' ' '
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3 3 3 2

1 ( / ) , for 1, 2
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T
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            (11) 

 where it is assumed that 0(1 )tK d H    and 2 0(1 ) .SK d H       Further,  

 ' '
0 0 0

'
3 0 0 0 0 3 0 2 0 0

1 ( / ) for 1, 2
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i i

T

B M H H i
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
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   

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                                                                   (12)  

The Eq. (6b) implies that H' ',
 
where '  is the perturbed magnetic scalar potential. Normal mode solutions of all 

dynamical variables can be written as  
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   

                                                                                                                              (13) 

where 0k  is the wave number is given by  
2 2 2
0 .x yk k k         

The vertical component of the momentum equation can be written as 
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(14)  

where 
v u

x y


 
 
 

 is the vertical component of vorticity. 

The vertical component of vorticity equation can be written as  



 

 

 
40 Global Journal of Mathematical Analysis 

 
2

2
0 0 0 02

1

2
w

k
t k zz


    

    
            

                                       (15) 

The modified Fourier heat conduction equation is  

2 2 2
2 0 0 0 2 0
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    (16) 

where 0 0 , 0 0v HC C K H    . 

The Salinity equation is  

2 2
2 2
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          (17) 

Using the analysis similar to Sekar et al. [23], one gets 
2
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Following the analysis of [3] and [21]-[25], the equations in non-dimensional form can be written using  
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Then the Eqs. (14)–(18) become 
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and  
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where the non-dimensional parameters used are  
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where SR is the salinity Rayleigh number, R  is the thermal Rayleigh number,  rP is the Prandtl number and other 

parameters described non-dimensional parameters. 

 

3 Free boundaries solutions 

The boundary conditions on velocity, temperature, salinity and angular momentum are   
2* * * * * * * 0w D w T D S D          at * 1/ 2.z                                              (26) 

The exact solutions satisfying above Eq. (26) are  
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                                                                (27) 

where 1 1 1 1, , andA B C E are constants. These functions substituted in the set of Eqs. (20) – (24) gives the following four 

linear homogeneous algebraic equations in the constant 1 1 1 1, , andA B C E are obtained upon 
* *

1'k k  and removing the 

asterisks for our convenience, where  is non-dimensional parameter governing anisotropy leads to  
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The determinant of the co-efficient of 1 1 1 1, , andA B C E in Eqs. (28)–(31) must vanish for the existence of non-trivial 

eigen functions. The techniques and analysis of [3] and [7]-[12] (28)–(31) have been adopted to obtain  
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4 The case of stationary convection  

Substitution of a factor 1i  in Eq. (32) gives the marginal state of convection. If 1  is non-zero and real, then it 

gives the condition for oscillatory instability. If oscillatory instability exists, the angular frequency factor 1i  . Since 

, , , andU V W X Y are real, the Eq. (32) could be satisfied for 1i  , if and only if 0.        

For 1 0   Rayleigh number for stationary mode is calculated from the analysis [3] and [7]-[12] of the eigen value 

equation and which is simplified to   
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When 1k 
 
this tends to the critical Rayleigh number obtained by Vaidyanathan et al. [23] for multi–component 

fluid. This leads to the critical Rayleigh number obtained by Sekar et al. [25] for multi–component fluid as 0aT  . 

When the salinity Rayleigh number RS taken to be zero, this tends to the critical Rayleigh number obtained by Sekar et 

al. [7] for single component fluid.  When the magnetization parameter M1 = 0, the classical Rayleigh problem for 

bouncy-induced convection is obtained [2]. When all the magnetic parameters M1–M6 vanishes, this reduces to double 

diffusive convection [26]. When 1M is very large, the critical magnetic thermal Rayleigh number 1sc scN M R  for 

stationary mode could be simplified as  
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Which express the critical magnetic thermal Rayleigh number Nc is a function of critical wave number a, medium 

permeability k1, anisotropic parameter  , Taylor number Ta, salinity Rayleigh number RS, Soret coefficient ST, ratio of 

mass transport to the heat transport  , ratio of thermal flux due to magnetization to magnetic flux M2, non-buoyancy 

magnetization parameter M3, ratio of magnetic forces due to salinity fluctuation to buoyant forces M4, ratio of salinity 

effect on magnetic field to pyromagnetic coefficient M5 and ratio of mass diffusivity to thermal conductivity M6.       
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5 The case of oscillatory mode 

Use of the factor 1i   in Eq. (32), one gets the real value of Rayleigh number by following of [3] and [7]-[12] 

because the Rayleigh number is not a complex number, that is 0.ocImR  Implies that ocR is a real number. Therefore 

the magnetic thermal Rayleigh number is calculated as 
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non containing R and 2 2 2, ,X Y W are the terms containing R.  
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6 Results and discussion 

Brinkman model is made on the effect of linearity on rotation and anisotropy of Soret-driven thermoconvective 

instability in a ferrofluid with uniform angular velocity heated from below and salted from above has been analyzed. A 

linear stability analysis is carried out as perturbations are small and normal mode technique is applied. The conditions 

for both stationary and oscillatory modes have been calculated. The range of Taylor number Ta is chosen to study the 

implication of effect of rotation from a very small range to mediocre high range.  
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                   (a)                   (b) 

                                                          

Fig. 1: (a) Variation of cR  versus  of stationary instability for different 1k , 500,sR  0.002TS  and 10aT  .  

(b) Variation of  cR  versus  of oscillatory instability for different 1k , 500,sR  0.002TS  and 
510 .aT 

 
 

The Taylor number Ta, which decides the effect of coriolis force, is allowed to vary from 10 to 10
8
 [23, 24] and Ta has 

defined by effect of rotation. The Prandtl number Pr is assumed to be 0.01 [23]-[25]. The buoyancy magnetization M1 is 

taken to be 1000. The value of M2 is assumed to be zero [7]-[12] for these types of fluids. The non-buoyancy 

magnetization parameter M3 is allowed to vary from 5 to 25, because this parameter cannot take a value less than one 

[25]. The range of permeability of the porous medium k1 is varied from 0.1 to 0.9 [23]-[25] and the range of an 

anisotropic parameter  is varied from 0.3 to 3.1 [25]. The ratio of mass transport to the heat transport  is taken as 

0.03 (0.02) 0.11 [25]. The salinity Rayleigh number Rs is taken values from -500 to 500 and Soret parameter ST is varied 

from -0.002 to 0.002 and the magnetization parameters M4, M5 and M6 are assumed to be 0.1 [23]-[25]. This system has 

been found to stabilize through stationary mode for Ta=10 and 100. When 
310 ,aT   the system has stabilized through 

oscillatory mode.   
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Fig. 2. (a) Variation of cR  versus  of oscillatory instability for different 3,M 100,sR   0.001TS  and 
510 .aT                 

(b) Variation of cR  versus  of oscillatory instability for different 3,M 500,sR   0.002TS  and 
510 .aT 

 
  

From Fig. 1. (a), the cell shape and magnetic Rayleigh number Rc with respect to the anisotropy parameter , indicate 

that the system destabilizes as the anisotropic parameter  increases. This is indicated by a decrease in Rc. Also as the 

permeability of the porous medium k1 increases from 0.1 to 0.9, there is a fall in the values of Rc. Thus, the large 

permeability is found to induce instability through the stationary mode. This is because, as the pore size increases the 

fluid flow takes place easily.         
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It is observed from Fig. 1. (b) that permeability of the porous medium and anisotropic effect have a destabilizing 

behavior of the system and it gives the above onset of instability for oscillatory mode. Fig. 2. (a) gives the variation of 

Rc versus  for different values of magnetization parameter M3, ST=0.001, Rs=100 and Ta=10
5
 for oscillatory mode as 

discussed earlier. It is clear that as the critical thermal Rayleigh number Rc increases, anisotropic parameter   increases. 

This tends to stabilize the system because the effect of rotation is much pronounced. Here a cell shape is evident to 

witness as M3=5. But the other values of magnetization parameter M3 varied from 10 to 25 are uniform cell shapes with 

thickness of the gap. However this system tends to stabilize.  
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Fig. 3. (a) Variation of cR versus SR of oscillatory instability for different   when 
510 .aT   (b) Variation of cR versus TS of 

oscillatory instability for different   when 
510 .aT 

 
   

In Fig. 2. (b), the variation of Rc versus  for various values of M3, ST=0.002, Rs=500 and Ta=10
5
 for oscillatory mode. 

It is seen that as critical Rayleigh number Rc increases, anisotropic parameter  increases. This tends to stabilize the 

behavior. Moreover, the positive range of Soret coefficient ST and salinity Rayleigh number RS have stabilizing 

behavior and the negative range of Soret coefficient ST and salinity Rayleigh number RS have destabilizing behavior.     

Fig. 3. (a) indicates the variation of Rc versus the salinity Rayleigh number Rs for different values of the ratio of mass 

transport to the heat transport   and Ta=10
5
 for oscillatory instability as it is greater than 10

3
. When Rs varies from -500 

to 500, the values of Rc decreases and promoting instability. This is imparted to the fluid salted from above and heated 

from below making the system top heavy. Also if it is salted from below and heated from above the trend is reversed. 

In Fig. 3. (b), the variation of Rc versus the Soret parameter ST for different value of the ratio of mass transport to the 

heat transport   and Ta=10
5
 for oscillatory mode. It is clear that the system destabilizes according to increase of Rc and 

decrease of ST. Also, the cell shape tends to asymptotic trend in Figs. 1. (a) and (b) and Figs. 3. (a) and (b) with respect 

to horizontal axis.   

Fig. 4. (a) shows that the variation of Rc versus  for various Taylor number Ta=10 and 100. This gives that the system 

destabilizes because the rotation is so small, when anisotropic parameter  increases and Rc decreases.  Fig. 

4. (b) analyses the variation of Rc versus  for different Taylor numbers 10
5
 to 10

8
 for oscillatory mode. An increase in 

Taylor number Ta leads to an increase in critical thermal Rayleigh number Rc. Clearly, this system tends to stabilize 

because the entire system of the rotation is much pronounced. 

 

7 Results and discussion 

The effect of rotation on Soret-driven ferrothermohaline convection saturating an anisotropic porous medium of sparse 

particle suspension has been investigated. The boundaries are considered to be insulated to temperature and salinity 

perturbations and the resulting eigen value problem is solved numerically using the Brinkman model as well as 

analytically employing regular perturbation technique with wave number ac as a perturbation parameter. Also we have 

investigated the effects of various important parameters on critical wave number and corresponding critical magnetic 

thermal Rayleigh number on the onset of convection. The principal conclusions of this investigation are as under:  
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For the case of stationary convection, anisotropy effect have a destabilizing behavior, whereas rotation have a 

stabilizing behavior. In the presence of small rotation
2( 10 ),aT  the destabilizing effect of the permeability of the 

porous medium and anisotropy are depicted in Fig. 1. (a) and Fig. 4. (a). But the presence of rotation is much 

pronounced 
3( 10 ),aT   the permeability of the medium and anisotropy effect may have a destabilizing or a stabilizing 

effect on the onset of instability. These are depicted in Fig. 1. (b), Figs. 2. (a) and (b), Figs. 3. (a) and (b) and Fig. 4.  (b). 

This is because in the presence of rotation, there is a competition between the destabilizing role of an anisotropy effect 

and the stabilizing role of rotation.          

From the Figures, one can conclude that the magnetization parameters, Soret parameter and rotation have a profound 

influence on the onset of convection in an anisotropic porous medium. Moreover, anisotropy and Soret effects have a 

destabilizing behavior and rotation have a stabilizing behavior. 
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Fig. 4. (a) Variation of cR  versus  of stationary instability for Ta = 10 and 100.  (b) Variation of cR  versus  of oscillatory 

instability for different Ta. 
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