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Abstract

In this paper, the authors introduce a new concept “(s,,m,) - (s,,m,) -convex function on co-ordinates” and establish
some inequalities for (s;,m,) - (s,,m,) -convex functions of 2-variables on the co-ordinates.
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1 Introduction

The following inequality, named after Simpson, is one of the best known results in the literature.
Theorem A. Let f :1 c R, =[0,00) - R = (—o0,0) be a four times continuously differentiable mapping on [a,b] and

I I, =sup, o | T (X) < o0 . Then
b -a !
Lol @

1 1 b
E{f(a)+4f( j+f(b)}—mj.af(x)dx 5

For more information and recent development on Simpson’s type inequalities, please refer to [1, 2, 3] and closely
related references therein.

In [4], J. Park obtained the following generalized identity for some partial differentiable mappings on a bi-dimensional
interval.

a-+b

2
Lemma 1. Let f : A — R be a partial differentiable mapping on A =[a,b]x[c,d] < R?. Ifr] ;;}1 eL(A), then for
r,r,= 2 and hlyhz 6(0,1) with ig hl < £ _11 ig hz < E = , We have
rl rl I’2 r-2

l(f)(n,hz,rl,e){‘“‘zr’ﬂ} f(ha+@-h)b.he+(1-h)d)

{q—Z
+
r1r2
L [f@o)+ f@d)+ fb.o)+ f(b,d)]——
L, ' ’ ’ ' r,(b—a)

1
rl(d _C)

r,—2

}[ f(ha+@-h)b,c)+ f(hla+(1—hl)b,d)]+{ }[ f(a,h,c+(@1-h,)d)+ f(b,h20+(1—h2)d)]

172

f:[f(><.c)+(r2 —2) f(x,hc+(1-h,)d)+ f(x,d)jx

[T @)+ -2 (s @b, y)+f 0.0By +g—sas [ [y ayax

=0 -a)d —o)[ [ p(h.r.t) (hz,rz,,l)%(ta +(1-t)b, Ac + (L—A)d )dtd A,

where
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t—rl, tefo.h] z—ri, Aelon,]

p(h,r,t) = ! L and q(h,,r,t) = 2 .
=872 tefh A-1272 aemh,

1 2

Moreover, J. Park established some Simpson-like type inequalities for co-ordinated s -convex mappings in the second
sense.
The main purpose of this paper is to introduce the new concept “co-ordinated (s,,m,) - (s,,m,) -convex function” and

establish some new inequalities for such kind of functions on the co-ordinates.

2 Co-ordinated (s,,m,)-(s,,m,)-convex functions

In [2, 4-10], Dragomir et al. and Park considered among others the class of mappings which are convex and s -convex
on the co-ordinates.

Let us now consider a bi-dimensional interval A=[a,b]x[c,d] in R* withb >a and d >c.

Definition 1. ([8]) A mapping f : A— Ris said to be convex on A if the inequality
flax+(1-)z,ay +(l—-aw)<af (X,y)+1-a)f (z,W)
holds for all (x,y),(z,.w)eA and a <[0,1]. If the inequality is reversed, then f is said to be concave on A.

A modification for convex functions, which is also known as co-ordinated convex functions, was introduced by
Dragomir in [6] as follows.

Definition 2. A function f :A—R is said to be convex on the co-ordinates on A if the partial mappings
f, :[ab]>R,f, U)=FfQu,y) and f, :[c,d] >R,f, (v)=f (x,v) areconvex forall x [a,b] and y €[c,d].

A formal definition for co-ordinated convex functions may be stated as follows.

Definition 3. A function f : A— R is said to be convex on the co-ordinates on A if the inequality
ftx+@Q-t)z, Ay +L—-A)W) <tAT (X, y)+t(1-A) F (X, W)+ AL-t) f(z, y) +A-t)QA-A) f (z,w)
holds for all (x,y ),(zw),(xw),(z,y )eA and t,A€[0,1].

Clearly, every convex mapping f : A — R is convex on the co-ordinates. Furthermore, there exists co-ordinated
convex functions which are not convex. See [9].

Definition 4 ([4, 8, 10]) For the bi-dimensional interval A =[a,b]x[c,d] in R} =[0,c0)* with a<b and ¢ <d , a
mapping f : A— R issaid to be s -convex on A if the inequality

f (ax +(1-a)z,ay +(1—a)w)£asf (x,y)+(1-a) f (zw)

holds for all (x,y ),(zw)eA and a<[0,1] and for some fixed s e (0,1] .

Definition 5. ([4, 8]) A function f :A=[a,b]x[c,d]= R’ — R is called s-convex on co-ordinates on A if the partial
mappings f, :[a,b]>Rf, (u)=f(u,y) and f, :[c.d] >R, f (v)=Ff(x\v) are s -convex for all xe[a,b],
ye[c,d] and s €(0,1],ie., f, and f, are s -convex for some fixed s (0,1] .

Theorem B. ([8]) Every s -convex mapping f :A=[a,b]x[c,d]cR% — R is s -convex on the co-ordinates. But, the
converse is not true in general.

A formal definition for co-ordinated s -convex mappings may be stated as follow.

Definition 6. ([4,8]) A mapping f : A — R is called s-convex on the co-ordinates on A if the inequality
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f(tx+(l—t)z,ly+(1—2,)w)stsﬂ,sf(x, )+t (1-4) F(x,w)+A°(1-t) f(z,y)+(1-t) (1-1) f(z,w)
holds for all (x,y ),(zw),(xw),(z,y)eA and t,2<[0,1] and s €(0,1].

J. Park gave the notions of (s,m) -convexity and (s,m) —convexity on the co-ordinates for the function f on a
rectangle from the plane R? as follows.

Definition 7 ([11]). A mapping f : A, =[0,b]x[0,d ] R? — R is (s,m)-convex on A if the inequality
f (ax +(1-a)z,ay +m(1-a)w ) <a’f (X,y)+m (l—ozS )f (zw)
holds for all (x,y ),(zw)eA and a [0,1] and for some fixed s,m < (0,1].

Definition 8 ([11]). A function f : A, =[0,b]x[0,d] = R? — R is called (s,m)- convex on co-ordinates on A if the
partial mappings f, :[0,b] >Rf (u)=f (u,y) and f, :[0d] >R, f,(¢)=Ff(x,v) are (s,m) -convex for all
x [0b],y €[0,d] and s,m €(0,1], i.e., f, andf, are (s,m)-convex with some fixed s,m < (0,1].

Motivated by the above definitions, we now introduce the (s,,m,) - (s,,m,) -convexity on the co-ordinates for a
function f (x) on a rectangle from the plane R? as follows:

Definition 9. A function f : A, =[0,b]x[0,d]c R — R is called (s,,m,)-(s,,m,) convex on co-ordinates on A if
the inequality
f(tx+m, (1-t)z, 4y +m,(1-A)w )

<t®A%f (x,y)+mt™ (l—ﬂSZ)f (X.W )+m,A> (1—t Sl)f (z,y )+m1m2(l—t Sl)(l—/lSZ)f (zw)
holds for all (x,y),(zw ),(xw),(z,y )eA witht,4<[0,1] and s;,5,,m;,m, €(0,1].
3 Some inequalities for (s,,m,)-(s,,m,)-convex functions

Theorem 1 Let f :R? — R be a partial differentiable mapping on A, :[O,mll]x[o,miz] forb>a>0andd >c>0.

2
If 8?;,1 elL(A,) is a co-ordinated (s,,m,) - (s,,m,) -convex mapping on A  for s,,s,,m;,;m, €(0,1], then for
rr, 22 and hh, €0 with = <h <% L ch, <271 the inequality
rl rl 2 r2
62f azf d
W| (F)(h,,h,,r,1,)| <#(h1,r1,sl){ﬂ(h2,r2,sz) (a c)|+m,v(h,,r,,s,) e (am_zj}
of (b b d
+V(h1ar1131){ 1ﬂ(h21r2! 2) 6’[8},[_ CJ +m mzv(hz,r2, 2) [m_ m_Z\J}, (3.1)
where
uh,r,s)=M(r,s)+N(h,s), v(h,r,s)=W (h,r)-M (r,s)-N (1-h,s),
and
_1)\s+2 s+1 _ s+1 _ _
M (r,s)=2+2(r D +r (s2 r +2), N (h.s) = h**((2h -1)s +2(h 1))7
(S +1)(S +2)rer (S +1)(S +2)

W (h, r)_ —h+h?+ (2r—2r)_

2
Proof. From Lemma 1 and the co-ordinated (s,,m,) - (s,,m,) -convexity of aat—;,l , We have
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W" (F)(hyh,.r,r)

<[ Fpturata (o 2t 1-0) 2 c+m,a-1) "
<J P (uraah, rp, Al —— | ta+m, (1 Y AS M=)

2

o’f d
a _
otoA

2
o1 [D 9 Mgtan
otoA\m, m,

dtdA

of oz ¢

_j j [p(h,.r.t) (hz,rz,/l)|{ A +mt e (L-A%)

o (b
otoA
(j |p(h1,rl,t)|t51dt){(f q.(h,.r,, A)|A%dA ‘—(a )

]

H{[Ip 0@t m, [ (., ] 4702)

+mm,(1-t*)1-1%)

+m (1-t*)A%

m (j g (h,.r, A)|@- ASZ)dA)

ataﬂ(b C]‘

mym (j g (h,.r, A)|@- ﬁ)dﬂ)

ot (b d
otoA{m, m,

1
it = gy rys,); [ 0 (hyry, )AL = p(hy,ry.s,);
@-r)
rl
(2-r,)

2

1 s 1 1
[[Iphyr )] @=t=)de = [ [p (hy,r,,t)]de = [ [p (hy,r, )t

1
[Jath,r,, ) @-a)dt =W (h,,r,) = p(h,.r,.s,).
Substituting the above equations into (3.2) and rearranging leads to (3.1). This completes the proof.

Note that
1
[REIGRI:

1
[Ip(h.r.t]ct =S heh

=W (h,,r,);

1 1 2
[ lath,,r,.t)|dt =5 —h+hy+ =W (h,,r,);

sdt =W (hy,r,)—u(h,,r,,s,);

Corollary 1. Under the conditions of Theorem 1,

(i) if we choose h, =h, :%, rr=r,=6,and s, =s, =m, =m, =1in (3.1), then

|(f)[3366j

. <(5J M (b —a)(d —c) .

72

(ii) if we choose h, =h, :% ,h=r,=2,and s, =s,=m; =m, =1 in (3.1), then

|(f)(1%22j

|ata/1

<@ M (b -a)d ),

where
of
otoa

| 0%
|otoa

7 @c)+

b,c)|+
ata,z ®.c)l+

(ad)‘

——; @ d)‘
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Theorem 2 Let f :R? — R be a partial differentiable mapping on A =[0,mll]x[0,mlz] forb>a>0andd >c>0.

q

2
If ot elL(A,) is a co-ordinated (s,,m,) - (S,,m,) -convex mapping, where s;,s,,m,;,m,e(0,1] and
1l for q >1, then for r,,r, >2 and h;,h, €(0,2) with ishl < rl_l,ishz <L e inequality
P q r, r r, r,
1 - 1 ot ot (d
— 1 (f)(h,h,,r,r,)| <glvP a,c) +m,s,|——|a,—
b _ayd o' Owhanr) <y (sl+1)(sz+1)[|8t6/1( ) M2 5 m,
1
2 q 2 q q
+m,s, or l,c +m,s,m.,s, A Ld— (3.3
otoA\ m, otoA\m, m,

is true, where
_24(r,—rh —1)P 4 (rh, —1)P
' (p +1)

_ 2+(r,—r;h, - )p+l +(r,h, - )p+l
r2p+1(p +1)

and v,

Proof. From Lemma 1, we have

1
m“ (f )(hl’hZ’rl’r2)|

<[ [Ipth.r,t)a(h,.r,,2) dtdA

2
or ta+ml(1—t)£,ﬂc +m2(1—,1)d—
otoA m, m

2

s{j: [llphr.t) (hz,rz,z)fdtd/l}” {jol [

2
T Naem =2, Ac+m, 1-4)-L
otoA m, m,

dtdﬂ} . (3.4)

2 q

Hence, by the inequality (3.4) and the co-ordinated (s,,m,) - (s,,m,) -convexity of

, it follows that

1
1 t P E 1 |62f q
Gayd—o RS 0y, )| dida a.c
(b—a)(d_c)| (f)(h,h,,r,1)| {Lfolp(h Lhach,,r, A)| } {(Sl+l)(sz+1) |ata/1( )
1
o°f d i PR b q o b g e
+m,S, —| a,— +m,s; —,C +mm.s;S, |——| —,— '
atoal 'm, atoa\m, oA mm,
Note that
— _ p+1 _ p+l
[{pyr0f dt = 250=nh =7+ 6h =Y
r’=(p+1)
and

[, r, ) de = 2+ (r, =1y, 77+ (rph, -1
ol TR r? ™ (p +1)

Substituting the above equations into (3.4) and simplifying results in (3.3). The proof is complete.

Corollary 2 Under the conditions of Theorem 2,

(i) if we choose h, =h, =%, rr=r,=6,and s, =s,=m, =m, =1, then

11 2(1+2°) g .
‘I (f)(E,E,QGJ‘Sl:m} (b —a)(d —C)'\/lq .
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(ii) if we choose h, =h, =%,r1 =r,=2,and s, =s,=m, =m, =1, then

11 1 o 1
1(F) =, =,22]<|——1] b-a)d-c)M?.
‘ ( )(2 5 j‘{zp(p +1)} (b —a)d —c)M,

% r,=r,=6,s,=s,=m,=m,=1,and p =1, then

11 5 o

‘I (f)(E’E‘G'Gj S(%j (b -a)d <)M,
v :z[
“ 4

q q
Theorem 3 Let f :R? — R be a partial differentiable mapping on A, :[O,mll]x[o

(iii) if we choose h, =h, =

where

q

of
otoA

o’f
otoA

o’f
otoA

o’f
otoA

(a,c)] +|——(@,d) +

——;0.c) +

——, (0.d)

|

,mlz] forb>a>0andd >c>0.

2 q
Ifl] ;afﬂ elL(4A,,) is a co-ordinated (s,,m,) - (s,,m,) - convex mapping for s,,s,,m,,;m, (0,1, g>1, and
111, then, for r,r,>2 and h;,h, €(0,1) with Lo < rl_l,ish2 <7l e inequality
P q r rn r r

L e, @)1, . @n)
R R e N
o ( d jq]
a_
otoA

+mm,v(h,,r,,s

q
+myv(h,,r,,s,)|——

2

<, o{mhz,rz, M—@o)

2 q
’f (b
otoA\m,’

holds true, where g and v are given in Theorem 2.1.

+v(h,r,s,) [mlﬂ(hz \12,85)

Proof. From Lemma 1, it follows that

1 101 o f
(b-a)d—c) _C)|'(f)(h1, h.rn) < [ [pch, rllt)q(hzvrzaﬂ)|‘@(ta+(l—t)b,/10+(1—/1)d) dtdA

1p1 1% 1p1 o f
< {jo [REGRALIGS rz,/l)|dtd,1} [ [ Ipthr, Dach,, 1, )] o @+ A-0b.Ac+ A= A)d)
It is straightforward that

1 1 2-r) 1 2-r,)
[Ip(hrt)pt :E_h1+hlz+Tzl, j0|q(h2,r2,/1)h/1:5—h2+h§+72.

q a
dtd/?} . (36)

2 q

Since

is a co-ordinated (s,,m,) - (S,,m,) -convex mapping on A, we have

q

dtdA

of d
a R
otol

1p1 o%f
jo jo|p(h1,rl,t ) (hy,r,,4)| M(ta +(1-t)b,Ac +(1-A)d)

2 q

oz &)

a

<J [, Ip(hl,rl,t)q(hz,rz,/l)|{ teA” +m, e (L-A%)|——
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2 4 2 K
+m,(1-t*)A™ or L,c +m,m, (-t 51)(1—/152)£ L Ll dtdA
otoA\ m, otoAlm, 'm,

q

([P uraofat ([, plaaz ‘—(a )

+m (j la (h,,r,, )| @~ ﬂsz)dﬂ) at;ﬂ(a d_J

+(J.:|p(h1,rl,t)|(l—t s1)dt) (J' |q (hz,rz,i)MSZd/l) atal( b c)q

q
1 s of (b d
T T A S
1 2

q 2 q
+m,v(h,,r,,s,) ot (a d—J

o%f
=u(h,,r,,s h,,r,,s a,c
u(hy,ry,s)uh,,r,,s,) /l( ) tOA

o’f

q q
b of (b d
+v(h,r;,s,)ym,u(h,,r,,s,) ata,z( ,cj +m,m,v(h,,r,,s,) m@l[m_l'm_z]

Combining the above equations and inequalities reveals the assertion (3.5). The proof is completed.
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