Some inequalities for $(s_1, m_1) - (s_2, m_2)$ -convex functions on the co-ordinates

Shu-Ping Bai¹ and Feng Qi^{2*}

¹ College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China

Abstract

In this paper, the authors introduce a new concept " $(s_1, m_1) - (s_2, m_2)$ -convex function on co-ordinates" and establish some inequalities for $(s_1, m_1) - (s_2, m_2)$ -convex functions of 2-variables on the co-ordinates.

Keywords: co-ordinated convex function; $(s_1, m_1) - (s_2, m_2)$ -convex function; inequality.

1 Introduction

The following inequality, named after Simpson, is one of the best known results in the literature.

Theorem A. Let $f: I \subset \mathbb{R}_0 = [0, \infty) \to \mathbb{R} = (-\infty, \infty)$ be a four times continuously differentiable mapping on [a, b] and $||f^{(4)}||_{\infty} = \sup_{x \in [a, b]} |f^{(4)}(x)| < \infty$. Then

$$\left| \frac{1}{6} \left| f\left(\boldsymbol{a}\right) + 4f\left(\frac{\boldsymbol{a} + \boldsymbol{b}}{2}\right) + f\left(\boldsymbol{b}\right) \right| - \frac{1}{\boldsymbol{b} - \boldsymbol{a}} \int_{\boldsymbol{a}}^{\boldsymbol{b}} f\left(\boldsymbol{x}\right) d\boldsymbol{x} \right| \le \frac{\left(\boldsymbol{b} - \boldsymbol{a}\right)^{4}}{2880} \left\| f^{(4)} \right\|_{\infty}. \tag{1.1}$$

For more information and recent development on Simpson's type inequalities, please refer to [1, 2, 3] and closely related references therein.

In [4], J. Park obtained the following generalized identity for some partial differentiable mappings on a bi-dimensional interval.

Lemma 1. Let $f: \Delta \to \mathbb{R}$ be a partial differentiable mapping on $\Delta = [a,b] \times [c,d] \subset \mathbb{R}^2$. If $\Box \frac{\partial^2 f}{\partial t \partial \lambda} \in L(\Delta)$, then for

$$\begin{split} r_1, r_2 &\geq 2 \ and \ h_1, h_2 \in (0,1) \ with \ \frac{1}{r_1} \leq h_1 \leq \frac{r_1 - 1}{r_1}, \ \frac{1}{r_2} \leq h_2 \leq \frac{r_2 - 1}{r_2}, \ we \ have \\ I(f)(h_1, h_2, r_1, r_2) &= \left[\frac{(r_1 - 2)(r_2 - 2)}{r_1 r_2} \right] f(h_1 a + (1 - h_1)b, h_2 c + (1 - h_2)d) \\ &+ \left[\frac{r_1 - 2}{r_1 r_2} \right] \left[f(h_1 a + (1 - h_1)b, c) + f(h_1 a + (1 - h_1)b, d) \right] + \left[\frac{r_2 - 2}{r_1 r_2} \right] \left[f(a, h_2 c + (1 - h_2)d) + f(b, h_2 c + (1 - h_2)d) \right] \\ &+ \frac{1}{r_1 r_2} \left[f(a, c) + f(a, d) + f(b, c) + f(b, d) \right] - \frac{1}{r_2 (b - a)} \int_a^b \left[f(x, c) + (r_2 - 2)f(x, h_2 c + (1 - h_2)d) + f(x, d) \right] dx \\ &- \frac{1}{r_1 (d - c)} \int_c^d \left[f(a, y) + (r_1 - 2)f(h_1 a + (1 - h_1)b, y) + f(b, y) \right] dy \right. \\ &+ \frac{1}{(b - a)(d - c)} \int_a^b \int_c^d f(x, y) dy dx \\ &= (b - a)(d - c) \int_0^1 \int_0^1 p(h_1, r_1, t) q(h_2, r_2, \lambda) \frac{\partial^2 f}{\partial t \partial \lambda} (ta + (1 - t)b, \lambda c + (1 - \lambda)d) dt d\lambda, \end{split}$$

where

² School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China *Corresponding author E-mail: qifeng618@gmail.com

$$p(h_{1}, r_{1}, t) == \begin{cases} t - \frac{1}{r_{1}}, & t \in [0, h_{1}] \\ t - \frac{r_{1} - 1}{r_{1}}, & t \in [h_{1}, 1] \end{cases} \text{ and } q(h_{2}, r_{2}, t) = \begin{cases} \lambda - \frac{1}{r_{2}}, & \lambda \in [0, h_{2}], \\ \lambda - \frac{r_{2} - 1}{r_{2}}, \lambda \in [h_{2}, 1]. \end{cases}$$

Moreover, J. Park established some Simpson-like type inequalities for co-ordinated s -convex mappings in the second sense.

The main purpose of this paper is to introduce the new concept "co-ordinated $(s_1, m_1) - (s_2, m_2)$ -convex function" and establish some new inequalities for such kind of functions on the co-ordinates.

2 Co-ordinated $(s_1, m_1) - (s_2, m_2)$ -convex functions

In [2, 4-10], Dragomir et al. and Park considered among others the class of mappings which are convex and s -convex on the co-ordinates.

Let us now consider a bi-dimensional interval $\Delta = [a,b] \times [c,d]$ in \mathbb{R}^2 with b > a and d > c.

Definition 1. ([8]) A mapping $f: \Delta \to \mathbb{R}$ is said to be convex on Δ if the inequality $f(\alpha x + (1-\alpha)z, \alpha y + (1-\alpha)w) \le \alpha f(x,y) + (1-\alpha)f(z,w)$ holds for all $(x,y),(z,w) \in \Delta$ and $\alpha \in [0,1]$. If the inequality is reversed, then f is said to be concave on Δ .

A modification for convex functions, which is also known as co-ordinated convex functions, was introduced by Dragomir in [6] as follows.

Definition 2. A function $f: \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if the partial mappings $f_y: [a,b] \to R$, $f_y(u) = f(u,y)$ and $f_x: [c,d] \to R$, $f_x(v) = f(x,v)$ are convex for all $x \in [a,b]$ and $y \in [c,d]$.

A formal definition for co-ordinated convex functions may be stated as follows.

Definition 3. A function $f: \Delta \to \mathbb{R}$ is said to be convex on the co-ordinates on Δ if the inequality $f(tx+(1-t)z, \lambda y+(1-\lambda)w) \le t\lambda f(x,y)+t(1-\lambda)f(x,w)+\lambda(1-t)f(z,y)+(1-t)(1-\lambda)f(z,w)$ holds for all $(x,y),(z,w),(x,w),(z,y) \in \Delta$ and $t,\lambda \in [0,1]$.

Clearly, every convex mapping $f: \Delta \to \mathbb{R}$ is convex on the co-ordinates. Furthermore, there exists co-ordinated convex functions which are not convex. See [9].

Definition 4 ([4, 8, 10]) For the bi-dimensional interval $\Delta = [a,b] \times [c,d]$ in $\mathbb{R}_0^2 = [0,\infty)^2$ with a < b and c < d, a mapping $f : \Delta \to \mathbb{R}$ is said to be s -convex on Δ if the inequality

$$f\left(\alpha x + (1-\alpha)z, \alpha y + (1-\alpha)w\right) \leq \alpha^{s} f\left(x,y\right) + (1-\alpha)^{s} f\left(z,w\right)$$

holds for all $(x,y),(z,w) \in \Delta$ and $\alpha \in [0,1]$ and for some fixed $s \in (0,1]$.

Definition 5. ([4, 8]) A function $f : \Delta = [a,b] \times [c,d] \subseteq \mathbb{R}^2 \to \mathbb{R}$ is called S-convex on co-ordinates on Δ if the partial mappings $f_y : [a,b] \to \mathbb{R}$, $f_y(u) = f(u,y)$ and $f_x : [c,d] \to \mathbb{R}$, $f_x(v) = f(x,v)$ are s-convex for all $x \in [a,b]$, $y \in [c,d]$ and $s \in (0,1]$, i.e., f_y and f_x are s-convex for some fixed $s \in (0,1]$.

Theorem B. ([8]) Every s -convex mapping $f: \Delta = [a,b] \times [c,d] \subset \mathbb{R}_0^2 \to \mathbb{R}$ is s -convex on the co-ordinates. But, the converse is not true in general.

A formal definition for co-ordinated s -convex mappings may be stated as follow.

Definition 6. ([4,8]) A mapping $f: \Delta \to \mathbb{R}$ is called S-convex on the co-ordinates on Δ if the inequality

$$f\left(tx+\left(1-t\right)z,\lambda y+\left(1-\lambda\right)w\right)\leq t^{s}\lambda^{s}f\left(x,y\right)+t^{s}\left(1-\lambda\right)^{s}f\left(x,w\right)+\lambda^{s}\left(1-t\right)^{s}f\left(z,y\right)+\left(1-t\right)^{s}\left(1-\lambda\right)^{s}f\left(z,w\right)$$
holds for all $(x,y),(z,w),(x,w),(z,y)\in\Delta$ and $t,\lambda\in[0,1]$ and $s\in(0,1]$.

J. Park gave the notions of (s,m)-convexity and (s,m)-convexity on the co-ordinates for the function f on a rectangle from the plane \mathbb{R}^2 as follows.

Definition 7 ([11]). A mapping $f : \Delta_0 = [0, b] \times [0, d] \subset \mathbb{R}^2 \to \mathbb{R}$ is (s, m)-convex on Δ if the inequality $f(\alpha x + (1-\alpha)z, \alpha y + m(1-\alpha)w) \le \alpha^s f(x, y) + m(1-\alpha^s)f(z, w)$ holds for all $(x, y), (z, w) \in \Delta$ and $\alpha \in [0, 1]$ and for some fixed $s, m \in (0, 1]$.

Definition 8 ([11]). A function $f : \Delta_0 = [0, b] \times [0, d] \subset \mathbb{R}^2_0 \to \mathbb{R}$ is called (s, m) - convex on co-ordinates on Δ if the partial mappings $f_y : [0, b] \to \mathbb{R}$, $f_y(u) = f(u, y)$ and $f_x : [0, d] \to \mathbb{R}$, $f_x(v) = f(x, v)$ are (s, m) -convex for all $x \in [0, b]$, $y \in [0, d]$ and $s, m \in (0, 1]$, i.e., f_y and f_x are (s, m) -convex with some fixed $s, m \in (0, 1]$.

Motivated by the above definitions, we now introduce the $(s_1, m_1) - (s_2, m_2)$ -convexity on the co-ordinates for a function f(x) on a rectangle from the plane \mathbb{R}^2 as follows:

Definition 9. A function $f: \Delta_0 = [0, b] \times [0, d] \subset \mathbb{R}^2 \to \mathbb{R}$ is called $(s_1, m_1) - (s_2, m_2)$ convex on co-ordinates on Δ if the inequality

$$f(tx + m_1(1-t)z, \lambda y + m_2(1-\lambda)w)$$

$$\leq t^{s_1}\lambda^{s_2}f(x,y) + m_1t^{s_1}(1-\lambda^{s_2})f(x,w) + m_2\lambda^{s_2}(1-t^{s_1})f(z,y) + m_1m_2(1-t^{s_1})(1-\lambda^{s_2})f(z,w)$$
holds for all $(x,y), (z,w), (x,w), (z,y) \in \Delta$ with $t,\lambda \in [0,1]$ and $s_1, s_2, m_1, m_2 \in (0,1]$.

3 Some inequalities for $(s_1, m_1) - (s_2, m_2)$ -convex functions

Theorem 1 Let $f: \mathbb{R}^2_0 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta_m = [0, \frac{b}{m_1}] \times [0, \frac{d}{m_2}]$ for b > a > 0 and d > c > 0. If $\frac{\partial^2 f}{\partial t \partial \lambda} \in L(\Delta_m)$ is a co-ordinated $(s_1, m_1) - (s_2, m_2)$ -convex mapping on Δ_m for $s_1, s_2, m_1, m_2 \in (0,1]$, then for $r_1, r_2 \ge 2$ and $h_1, h_2 \in (0,1)$ with $\frac{1}{r_1} \le h_1 \le \frac{r_1 - 1}{r_1}, \frac{1}{r_2} \le h_2 \le \frac{r_2 - 1}{r_2}$, the inequality $\frac{1}{r_1} \| L(f)(h_1, h_2, r_1, r_2) \| \le \mu(h_1, r_2, s_2) \| \frac{\partial^2 f}{\partial r_1} (a, c) \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_2 \| f \|_{L^\infty} \| h_1 \|_{L^\infty} \| h_1 \| f \|_{L^\infty} \| h_1 \|_{L^\infty}$

$$\frac{1}{(b-a)(d-c)} |I(f)(h_1, h_2, r_1, r_2)| \leq \mu(h_1, r_1, s_1) \left\{ \mu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(a, c) \right| + m_2 \nu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(a, \frac{d}{m_2}) \right| \right\} \\
+ \nu(h_1, r_1, s_1) \left\{ m_1 \mu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(\frac{b}{m_1}, c) \right| + m_1 m_2 \nu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(\frac{b}{m_1}, \frac{d}{m_2}) \right| \right\}, (3.1)$$

where

$$\mu(h,r,s) = M(r,s) + N(h,s), \ \nu(h,r,s) = W(h,r) - M(r,s) - N(1-h,s),$$

and

$$M(r,s) = \frac{2+2(r-1)^{s+2}+r^{s+1}(s-r+2)}{(s+1)(s+2)r^{s+2}}, N(h,s) = \frac{h^{s+1}((2h-1)s+2(h-1))}{(s+1)(s+2)},$$

$$W(h,r) = \frac{1}{2}-h+h^2+\frac{(2-r)}{r^2}.$$

Proof. From Lemma 1 and the co-ordinated $(s_1, m_1) - (s_2, m_2)$ -convexity of $\frac{\partial^2 f}{\partial t \partial \lambda}$, we have

$$\frac{1}{(b-a)(d-c)} |I(f)(h_1,h_2,r_1,r_2)| \\
\leq \int_0^1 \int_0^1 |p(h_1,r_1,t)| q(h_2,r_2,\lambda)| \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(ta + m_1(1-t) \frac{b}{m_1}, \lambda c + m_2(1-\lambda) \frac{d}{m_2} \right) \right| dt d\lambda \\
\leq \int_0^1 \int_0^1 |p(h_1,r_1,t)| q(h_2,r_2,\lambda)| \left\{ t^{s_1} \lambda^{s_2} \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a,c) \right| + m_2 t^{s_1} (1-\lambda^{s_2}) \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(a, \frac{d}{m_2} \right) \right| \\
+ m_1(1-t^{s_1}) \lambda^{s_2} \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(\frac{b}{m_1}, c \right) \right| + m_1 m_2 (1-t^{s_1}) (1-\lambda^{s_2}) \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(\frac{b}{m_1}, \frac{d}{m_2} \right) \right| \right\} dt d\lambda \\
= \left(\int_0^1 |p(h_1,r_1,t)| t^{s_1} dt \right) \left\{ \left(\int_0^1 |q(h_2,r_2,\lambda)| \lambda^{s_2} d\lambda \right) \left| \frac{\partial^2 f}{\partial t \partial \lambda} (a,c) \right| \\
+ m_2 \left(\int_0^1 |q(h_2,r_2,\lambda)| (1-\lambda^{s_2}) d\lambda \right) \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(a, \frac{d}{m_2} \right) \right| \right\} \\
+ \left(\int_0^1 |p(h_1,r_1,t)| (1-t^{s_1}) dt \right) \left\{ m_1 \left(\int_0^1 |q(h_2,r_2,\lambda)| \lambda^{s_2} d\lambda \right) \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(\frac{b}{m_1}, c \right) \right| \\
+ m_1 m_2 \left(\int_0^1 |q(h_2,r_2,\lambda)| (1-\lambda^{s_2}) d\lambda \right) \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(\frac{b}{m_1}, \frac{d}{m_2} \right) \right| \right\}. \quad (3.2)$$

Note that

$$\int_{0}^{1} |p(\mathbf{h}_{1}, \mathbf{r}_{1}, t)| t^{s_{1}} dt = \mu(\mathbf{h}_{1}, \mathbf{r}_{1}, s_{1}); \int_{0}^{1} |q(\mathbf{h}_{2}, \mathbf{r}_{2}, \lambda)| \lambda^{s_{2}} dt = \mu(\mathbf{h}_{2}, \mathbf{r}_{2}, s_{2});$$

$$\int_{0}^{1} |p(\mathbf{h}_{1}, \mathbf{r}_{1}, t)| dt = \frac{1}{2} - \mathbf{h}_{1} + \mathbf{h}_{1}^{2} + \frac{(2 - \mathbf{r}_{1})}{\mathbf{r}_{1}^{2}} = \mathbf{W}(\mathbf{h}_{1}, \mathbf{r}_{1});$$

$$\int_{0}^{1} |q(\mathbf{h}_{2}, \mathbf{r}_{2}, t)| dt = \frac{1}{2} - \mathbf{h}_{2} + \mathbf{h}_{2}^{2} + \frac{(2 - \mathbf{r}_{2})}{\mathbf{r}_{2}^{2}} = \mathbf{W}(\mathbf{h}_{2}, \mathbf{r}_{2});$$

$$\int_{0}^{1} |p(\mathbf{h}_{1}, \mathbf{r}_{1}, t)| (1 - t^{s_{1}}) dt = \int_{0}^{1} |p(\mathbf{h}_{1}, \mathbf{r}_{1}, t)| dt - \int_{0}^{1} |p(\mathbf{h}_{1}, \mathbf{r}_{1}, t)| t^{s_{1}} dt = \mathbf{W}(\mathbf{h}_{1}, \mathbf{r}_{1}) - \mu(\mathbf{h}_{1}, \mathbf{r}_{1}, s_{1});$$

$$\int_{0}^{1} |q(\mathbf{h}_{2}, \mathbf{r}_{2}, \lambda)| (1 - \lambda^{s_{2}}) dt = \mathbf{W}(\mathbf{h}_{2}, \mathbf{r}_{2}) - \mu(\mathbf{h}_{2}, \mathbf{r}_{2}, s_{2}).$$

Substituting the above equations into (3.2) and rearranging leads to (3.1). This completes the proof.

Corollary 1. *Under the conditions of Theorem 1*,

(i) if we choose
$$\mathbf{h}_1 = \mathbf{h}_2 = \frac{1}{2}$$
, $\mathbf{r}_1 = \mathbf{r}_2 = 6$, and $\mathbf{s}_1 = \mathbf{s}_2 = \mathbf{m}_1 = \mathbf{m}_2 = 1$ in (3.1), then
$$\left| \mathbf{I}(\mathbf{f}) \left(\frac{1}{2}, \frac{1}{2}, 6, 6 \right) \right| \le \left(\frac{5}{72} \right)^2 \mathbf{M} (\mathbf{b} - \mathbf{a}) (\mathbf{d} - \mathbf{c}) .$$

(ii) if we choose
$$\mathbf{h}_1 = \mathbf{h}_2 = \frac{1}{2}$$
, $\mathbf{r}_1 = \mathbf{r}_2 = 2$, and $\mathbf{s}_1 = \mathbf{s}_2 = \mathbf{m}_1 = \mathbf{m}_2 = 1$ in (3.1), then
$$\left| \mathbf{I}(\mathbf{f}) \left(\frac{1}{2}, \frac{1}{2}, 2, 2 \right) \right| \le \left(\frac{1}{8} \right)^2 \mathbf{M} (\mathbf{b} - \mathbf{a}) (\mathbf{d} - \mathbf{c}),$$

where

$$M = \left| \frac{\partial^2 f}{\partial t \, \partial \lambda}(a, c) \right| + \left| \frac{\partial^2 f}{\partial t \, \partial \lambda}(a, d) \right| + \left| \frac{\partial^2 f}{\partial t \, \partial \lambda}(b, c) \right| + \left| \frac{\partial^2 f}{\partial t \, \partial \lambda}(b, d) \right|.$$

Theorem 2 Let $f: \mathbb{R}^2_0 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta_m = [0, \frac{b}{m_1}] \times [0, \frac{d}{m_2}]$ for b > a > 0 and d > c > 0.

$$\textit{If} \square \left| \frac{\partial^2 f}{\partial t \, \partial \lambda} \right|^q \in \boldsymbol{L}(\Delta_m) \ \textit{is a co-ordinated} \ (\boldsymbol{s}_1, \boldsymbol{m}_1) - (\boldsymbol{s}_2, \boldsymbol{m}_2) \ \textit{-convex mapping, where} \ \boldsymbol{s}_1, \boldsymbol{s}_2, \boldsymbol{m}_1, \boldsymbol{m}_2 \in (0, 1] \ \textit{and} \ \boldsymbol{s}_1, \boldsymbol{s}_2, \boldsymbol{m}_1, \boldsymbol{m}_2 \in (0, 1] \ \textit{and} \ \boldsymbol{s}_2, \boldsymbol{s}_3, \boldsymbol{s}_4, \boldsymbol{s}_4, \boldsymbol{s}_5, \boldsymbol{s}_5, \boldsymbol{s}_6, \boldsymbol{s$$

$$\frac{1}{p} + \frac{1}{q} = 1 \text{ for } q > 1 \text{, then for } r_1, r_2 \geq 2 \text{ and } h_1, h_2 \in (0,1) \text{ with } \frac{1}{r_1} \leq h_1 \leq \frac{r_1 - 1}{r_1}, \frac{1}{r_2} \leq h_2 \leq \frac{r_2 - 1}{r_2} \text{, the inequality } \frac{1}{r_1} \leq h_2 \leq \frac{r_2 - 1}{r_2} = \frac{r_2 - 1}{r_2}$$

$$\frac{1}{(\boldsymbol{b}-\boldsymbol{a})(\boldsymbol{d}-\boldsymbol{c})} \left| \boldsymbol{I}(\boldsymbol{f})(\boldsymbol{h}_{1},\boldsymbol{h}_{2},\boldsymbol{r}_{1},\boldsymbol{r}_{2}) \right| \leq \boldsymbol{\mu}_{3}^{\frac{1}{p}} \boldsymbol{v}_{3}^{\frac{1}{p}} \left\{ \frac{1}{(s_{1}+1)(s_{2}+1)} \left[\left| \frac{\partial^{2} \boldsymbol{f}}{\partial \boldsymbol{t} \, \partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^{q} + \boldsymbol{m}_{2} s_{2} \left| \frac{\partial^{2} \boldsymbol{f}}{\partial \boldsymbol{t} \, \partial \boldsymbol{\lambda}} \left(\boldsymbol{a}, \frac{\boldsymbol{d}}{\boldsymbol{m}_{2}} \right) \right|^{q} \right\} \right\}$$

$$+\boldsymbol{m}_{1}\boldsymbol{s}_{1}\left|\frac{\partial^{2}\boldsymbol{f}}{\partial\boldsymbol{t}\,\partial\boldsymbol{\lambda}}\left(\frac{\boldsymbol{b}}{\boldsymbol{m}_{1}},\boldsymbol{c}\right)\right|^{q}+\boldsymbol{m}_{1}\boldsymbol{s}_{1}\boldsymbol{m}_{2}\boldsymbol{s}_{2}\left|\frac{\partial^{2}\boldsymbol{f}}{\partial\boldsymbol{t}\,\partial\boldsymbol{\lambda}}\left(\frac{\boldsymbol{b}}{\boldsymbol{m}_{1}},\frac{\boldsymbol{d}}{\boldsymbol{m}_{2}}\right)\right|^{q}\right]^{\frac{1}{q}}$$
(3.3)

is true, where

$$\boldsymbol{\mu}_{3} = \frac{2 + (\boldsymbol{r}_{1} - \boldsymbol{r}_{1}\boldsymbol{h}_{1} - 1)^{p+1} + (\boldsymbol{r}_{1}\boldsymbol{h}_{1} - 1)^{p+1}}{\boldsymbol{r}_{1}^{p+1}(\boldsymbol{p} + 1)} \ \ and \ \ \boldsymbol{\nu}_{3} = \frac{2 + (\boldsymbol{r}_{2} - \boldsymbol{r}_{2}\boldsymbol{h}_{2} - 1)^{p+1} + (\boldsymbol{r}_{2}\boldsymbol{h}_{2} - 1)^{p+1}}{\boldsymbol{r}_{2}^{p+1}(\boldsymbol{p} + 1)} \ .$$

Proof. From Lemma 1, we have

$$\frac{1}{(b-a)(d-c)} \left| I(f)(h_1, h_2, r_1, r_2) \right| \\
\leq \int_0^1 \int_0^1 \left| p(h_1, r_1, t) q(h_2, r_2, \lambda) \right| \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(ta + m_1(1-t) \frac{b}{m_1}, \lambda c + m_2(1-\lambda) \frac{d}{m_2} \right) \right| dt d\lambda \\
\leq \left\{ \int_0^1 \int_0^1 \left| p(h_1, r_1, t) q(h_2, r_2, \lambda) \right|^p dt d\lambda \right\}^{\frac{1}{p}} \left\{ \int_0^1 \int_0^1 \left| \frac{\partial^2 f}{\partial t \partial \lambda} \left(ta + m_1(1-t) \frac{b}{m_1}, \lambda c + m_2(1-\lambda) \frac{d}{m_2} \right) \right|^q dt d\lambda \right\}^{\frac{1}{q}}. \tag{3.4}$$

Hence, by the inequality (3.4) and the co-ordinated $(s_1, m_1) - (s_2, m_2)$ -convexity of $\left| \frac{\partial^2 f}{\partial t} \right|^q$, it follows that

$$\frac{1}{(\boldsymbol{b}-\boldsymbol{a})(\boldsymbol{d}-\boldsymbol{c})} \Big| \boldsymbol{I}(\boldsymbol{f})(\boldsymbol{h}_1,\boldsymbol{h}_2,\boldsymbol{r}_1,\boldsymbol{r}_2) \Big| \leq \left\{ \int_0^1 \int_0^1 \Big| \boldsymbol{p}(\boldsymbol{h}_1,\boldsymbol{r}_1,\boldsymbol{t}) \boldsymbol{q}(\boldsymbol{h}_2,\boldsymbol{r}_2,\boldsymbol{\lambda}) \Big|^p \mathrm{d}\boldsymbol{t} \mathrm{d}\boldsymbol{\lambda} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{t} \partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{t} \mathrm{d}\boldsymbol{\lambda} \right\}^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{t} \partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{t} \mathrm{d}\boldsymbol{\lambda} \right\}^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{t} \partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{t} \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{t} \partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{t} \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{t} \partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{t} \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\left| \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right|^p \mathrm{d}\boldsymbol{\lambda} \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right]^p \right\}^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{1}{(s_1+1)(s_2+1)} \left[\frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right]^p \right\}^{\frac{1}{p}} \left\{ \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right\}^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right\}^{\frac{1}{p}} \left\{ \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right\}^{\frac{1}{p}} \left\{ \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right\}^{\frac{1}{p}} \right\}^{\frac{1}{p}} \left\{ \frac{\partial^2 \boldsymbol{f}}{\partial \boldsymbol{\lambda}}(\boldsymbol{a},\boldsymbol{c}) \right\}^{\frac{1}{p}} \left\{ \frac{\partial^2 \boldsymbol{$$

$$+\boldsymbol{m}_{2}\boldsymbol{s}_{2}\left|\frac{\partial^{2}\boldsymbol{f}}{\partial\boldsymbol{t}\,\partial\boldsymbol{\lambda}}\left(\boldsymbol{a},\frac{\boldsymbol{d}}{\boldsymbol{m}_{2}}\right)\right|^{q}+\boldsymbol{m}_{1}\boldsymbol{s}_{1}\left|\frac{\partial^{2}\boldsymbol{f}}{\partial\boldsymbol{t}\,\partial\boldsymbol{\lambda}}\left(\frac{\boldsymbol{b}}{\boldsymbol{m}_{1}},\boldsymbol{c}\right)\right|^{q}+\boldsymbol{m}_{1}\boldsymbol{m}_{2}\boldsymbol{s}_{1}\boldsymbol{s}_{2}\left|\frac{\partial^{2}\boldsymbol{f}}{\partial\boldsymbol{t}\,\partial\boldsymbol{\lambda}}\left(\frac{\boldsymbol{b}}{\boldsymbol{m}_{1}},\frac{\boldsymbol{d}}{\boldsymbol{m}_{2}}\right)\right|^{q}\right]\right\}^{\frac{1}{q}}.$$

Note that

$$\int_{0}^{1} \left| \boldsymbol{p} \left(\boldsymbol{h}_{1}, \boldsymbol{r}_{1}, \boldsymbol{t} \right) \right|^{p} d\boldsymbol{t} = \frac{2 + (\boldsymbol{r}_{1} - \boldsymbol{r}_{1} \boldsymbol{h}_{1} - 1)^{p+1} + (\boldsymbol{r}_{1} \boldsymbol{h}_{1} - 1)^{p+1}}{\boldsymbol{r}_{1}^{p+1} (\boldsymbol{p} + 1)}$$

and

$$\int_0^1 |q(h_2, r_2, \lambda)|^p dt = \frac{2 + (r_2 - r_2 h_2 - 1)^{p+1} + (r_2 h_2 - 1)^{p+1}}{r_2^{p+1} (p+1)}.$$

Substituting the above equations into (3.4) and simplifying results in (3.3). The proof is complete.

Corollary 2 Under the conditions of Theorem 2,

(i) if we choose
$$h_1 = h_2 = \frac{1}{2}$$
, $r_1 = r_2 = 6$, and $s_1 = s_2 = m_1 = m_2 = 1$, then

$$|I(f)\left(\frac{1}{2},\frac{1}{2},6,6\right)| \le \left[\frac{2(1+2^{p+1})}{6^{p+1}(p+1)}\right]^{\frac{2}{p}}(b-a)(d-c)M_q^{\frac{1}{q}}.$$

(ii) if we choose
$$\mathbf{h}_1 = \mathbf{h}_2 = \frac{1}{2}$$
, $\mathbf{r}_1 = \mathbf{r}_2 = 2$, and $\mathbf{s}_1 = \mathbf{s}_2 = \mathbf{m}_1 = \mathbf{m}_2 = 1$, then
$$\left| \mathbf{I}(f) \left(\frac{1}{2}, \frac{1}{2}, 2, 2 \right) \right| \leq \left[\frac{1}{2^r (p+1)} \right]^{\frac{2}{p}} (b - a)(d - c) \mathbf{M}_q^{\frac{1}{q}}.$$
(iii) if we choose $\mathbf{h}_1 = \mathbf{h}_2 = \frac{1}{2}$, $\mathbf{r}_1 = \mathbf{r}_2 = 6$, $\mathbf{s}_1 = \mathbf{s}_2 = \mathbf{m}_1 = \mathbf{m}_2 = 1$, and $\mathbf{p} = 1$, then
$$\left| \mathbf{I}(f) \left(\frac{1}{2}, \frac{1}{2}, 6, 6 \right) \right| \leq \left(\frac{5}{36} \right)^2 (b - a)(d - c) \mathbf{M}_q^{\frac{1}{q}},$$

where

$$\boldsymbol{M}_{q} = \frac{1}{4} \left[\left| \frac{\partial^{2} \boldsymbol{f}}{\partial \boldsymbol{t} \, \partial \boldsymbol{\lambda}} (\boldsymbol{a}, \boldsymbol{c}) \right|^{q} + \left| \frac{\partial^{2} \boldsymbol{f}}{\partial \boldsymbol{t} \, \partial \boldsymbol{\lambda}} (\boldsymbol{a}, \boldsymbol{d}) \right|^{q} + \left| \frac{\partial^{2} \boldsymbol{f}}{\partial \boldsymbol{t} \, \partial \boldsymbol{\lambda}} (\boldsymbol{b}, \boldsymbol{c}) \right|^{q} + \left| \frac{\partial^{2} \boldsymbol{f}}{\partial \boldsymbol{t} \, \partial \boldsymbol{\lambda}} (\boldsymbol{b}, \boldsymbol{d}) \right|^{q} \right].$$

Theorem 3 Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a partial differentiable mapping on $\Delta_m = [0, \frac{b}{m_1}] \times [0, \frac{d}{m_2}]$ for b > a > 0 and d > c > 0.

If $\Box \left| \frac{\partial^2 f}{\partial t \partial \lambda} \right|^q \in L(\Delta_m)$ is a co-ordinated $(s_1, m_1) - (s_2, m_2) - convex$ mapping for $s_1, s_2, m_1, m_2 \in (0,1]$, q > 1, and $\frac{1}{p} + \frac{1}{q} = 1$, then, for $r_1, r_2 \ge 2$ and $h_1, h_2 \in (0,1)$ with $\frac{1}{r_1} \le h_1 \le \frac{r_1 - 1}{r_1}, \frac{1}{r_2} \le h_2 \le \frac{r_2 - 1}{r_2}$, the inequality $\frac{1}{(b-a)(d-c)} |I(f)(h_1, h_2, r_1, r_2)| \le \left\{ \left(\frac{1}{2} - h_1 + h_1^2 + \frac{(2-r_1)}{r_1^2} \right) \left(\frac{1}{2} - h_2 + h_2^2 + \frac{(2-r_2)}{r_2^2} \right) \right\}^{1-\frac{1}{q}} \times \left\{ \mu(h_1, r_1, s_1) \left[\mu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(a, c) \right|^q + m_2 \nu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(a, \frac{d}{m_2}) \right|^q \right\} \right\}^{\frac{1}{q}} + \nu(h_1, r_1, s_1) \left[m_1 \mu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(\frac{b}{m_1}, c) \right|^q + m_1 m_2 \nu(h_2, r_2, s_2) \left| \frac{\partial^2 f}{\partial t \partial \lambda}(\frac{b}{m_1}, \frac{d}{m_2}) \right|^q \right]^{\frac{1}{q}}$. (3.5)

holds true, where μ and ν are given in Theorem 2.1.

Proof. From Lemma 1, it follows that

$$\frac{1}{(b-a)(d-c)} \left| \boldsymbol{I}(f)(\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \boldsymbol{r}_{1}, \boldsymbol{r}_{2}) \right| \leq \int_{0}^{1} \int_{0}^{1} \left| \boldsymbol{p}(\boldsymbol{h}_{1}, \boldsymbol{r}_{1}, t) \boldsymbol{q}(\boldsymbol{h}_{2}, \boldsymbol{r}_{2}, \boldsymbol{\lambda}) \right| \frac{\partial^{2} f}{\partial t \partial \boldsymbol{\lambda}} (t\boldsymbol{a} + (1-t)\boldsymbol{b}, \boldsymbol{\lambda}\boldsymbol{c} + (1-\boldsymbol{\lambda})\boldsymbol{d}) \right| dt d\boldsymbol{\lambda}$$

$$\leq \left\{ \int_{0}^{1} \int_{0}^{1} \left| \boldsymbol{p}(\boldsymbol{h}_{1}, \boldsymbol{r}_{1}, t) \boldsymbol{q}(\boldsymbol{h}_{2}, \boldsymbol{r}_{2}, \boldsymbol{\lambda}) \right| dt d\boldsymbol{\lambda} \right\}^{1-\frac{1}{q}} \left\{ \int_{0}^{1} \int_{0}^{1} \left| \boldsymbol{p}(\boldsymbol{h}_{1}, \boldsymbol{r}_{1}, t) \boldsymbol{q}(\boldsymbol{h}_{2}, \boldsymbol{r}_{2}, \boldsymbol{\lambda}) \right| \frac{\partial^{2} f}{\partial t \partial \boldsymbol{\lambda}} (t\boldsymbol{a} + (1-t)\boldsymbol{b}, \boldsymbol{\lambda}\boldsymbol{c} + (1-\boldsymbol{\lambda})\boldsymbol{d}) \right|^{q} dt d\boldsymbol{\lambda} \right\}^{\frac{1}{q}}. \quad (3.6)$$

It is straightforward that

$$\int_{0}^{1} |\boldsymbol{p}(\boldsymbol{h}_{1},\boldsymbol{r}_{1},\boldsymbol{t})| d\boldsymbol{t} = \frac{1}{2} - \boldsymbol{h}_{1} + \boldsymbol{h}_{1}^{2} + \frac{(2 - \boldsymbol{r}_{1})}{\boldsymbol{r}_{1}^{2}}, \int_{0}^{1} |\boldsymbol{q}(\boldsymbol{h}_{2},\boldsymbol{r}_{2},\boldsymbol{\lambda})| d\boldsymbol{\lambda} = \frac{1}{2} - \boldsymbol{h}_{2} + \boldsymbol{h}_{2}^{2} + \frac{(2 - \boldsymbol{r}_{2})}{\boldsymbol{r}_{2}^{2}}.$$

Since $\left| \frac{\partial^2 f}{\partial t} \right|^q$ is a co-ordinated $(s_1, m_1) - (s_2, m_2)$ -convex mapping on Δ , we have

$$\int_{0}^{1} \int_{0}^{1} \left| \boldsymbol{p} \left(\boldsymbol{h}_{1}, \boldsymbol{r}_{1}, \boldsymbol{t} \right) \boldsymbol{q} \left(\boldsymbol{h}_{2}, \boldsymbol{r}_{2}, \boldsymbol{\lambda} \right) \right| \frac{\partial^{2} \boldsymbol{f}}{\partial t \, \partial \boldsymbol{\lambda}} (t\boldsymbol{a} + (1 - \boldsymbol{t}) \boldsymbol{b}, \boldsymbol{\lambda} \boldsymbol{c} + (1 - \boldsymbol{\lambda}) \boldsymbol{d}) \right|^{q} dt d\boldsymbol{\lambda}$$

$$\leq \int_{0}^{1} \int_{0}^{1} \left| \boldsymbol{p} \left(\boldsymbol{h}_{1}, \boldsymbol{r}_{1}, \boldsymbol{t} \right) \boldsymbol{q} \left(\boldsymbol{h}_{2}, \boldsymbol{r}_{2}, \boldsymbol{\lambda} \right) \right| \left| \left\{ t^{s_{1}} \boldsymbol{\lambda}^{s_{2}} \left| \frac{\partial^{2} \boldsymbol{f}}{\partial t \, \partial \boldsymbol{\lambda}} (\boldsymbol{a}, \boldsymbol{c}) \right|^{q} + \boldsymbol{m}_{2} t^{s_{1}} (1 - \boldsymbol{\lambda}^{s_{2}}) \left| \frac{\partial^{2} \boldsymbol{f}}{\partial t \, \partial \boldsymbol{\lambda}} \left(\boldsymbol{a}, \frac{\boldsymbol{d}}{\boldsymbol{m}_{2}} \right) \right|^{q} \right] dt d\boldsymbol{\lambda}$$

$$+ m_{1}(1-t^{s_{1}})\lambda^{s_{2}} \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(\frac{b}{m_{1}}, c \right) \right|^{q} + m_{1}m_{2}(1-t^{s_{1}})(1-\lambda^{s_{2}}) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(\frac{b}{m_{1}}, \frac{d}{m_{2}} \right) \right|^{q} \right\} dt d\lambda$$

$$= \left(\int_{0}^{1} \left| p \left(h_{1}, r_{1}, t \right) \right| t^{s_{1}} dt \right) \left\{ \left(\int_{0}^{1} \left| q \left(h_{2}, r_{2}, \lambda \right) \right| \lambda^{s_{2}} d\lambda \right) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} (a, c) \right|^{q} \right.$$

$$+ m_{2} \left(\int_{0}^{1} \left| q \left(h_{2}, r_{2}, \lambda \right) \right| (1-\lambda^{s_{2}}) d\lambda \right) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(a, \frac{d}{m_{2}} \right) \right|^{q} \right\}$$

$$+ \left(\int_{0}^{1} \left| p \left(h_{1}, r_{1}, t \right) \right| (1-t^{s_{1}}) dt \right) \left\{ m_{1} \left(\int_{0}^{1} \left| q \left(h_{2}, r_{2}, \lambda \right) \right| \lambda^{s_{2}} d\lambda \right) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(\frac{b}{m_{1}}, c \right) \right|^{q} \right.$$

$$+ m_{1} m_{2} \left(\int_{0}^{1} \left| q \left(h_{2}, r_{2}, \lambda \right) \right| (1-\lambda^{s_{2}}) d\lambda \right) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(\frac{b}{m_{1}}, \frac{d}{m_{2}} \right) \right|^{q} \right\}$$

$$= \mu(h_{1}, r_{1}, s_{1}) \left\{ \mu(h_{2}, r_{2}, s_{2}) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} (a, c) \right|^{q} + m_{2} \nu(h_{2}, r_{2}, s_{2}) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(a, \frac{d}{m_{2}} \right) \right|^{q} \right\}$$

$$+ \nu(h_{1}, r_{1}, s_{1}) \left\{ m_{1} \mu(h_{2}, r_{2}, s_{2}) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(\frac{b}{m_{1}}, c \right) \right|^{q} + m_{1} m_{2} \nu(h_{2}, r_{2}, s_{2}) \left| \frac{\partial^{2}f}{\partial t \partial \lambda} \left(\frac{b}{m_{1}}, \frac{d}{m_{2}} \right) \right|^{q} \right\}$$

Combining the above equations and inequalities reveals the assertion (3.5). The proof is completed.

Acknowledgements

This work was partially supported by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant No.NJZY13159, China.

References

- [1] M. Alomari, M. Darus, and S.S. Dragomir, *New inequalities of Simpson's type for s -convex functions with applications*, RGMIA Res. Rep. Coll. Vol.12, No.4, (2009), Available online at http://rgmia.org/v12n4.php.
- [2] S.S. Dragomir, R.P. Agarwal, and P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5(2000), pp.533-579.
- [3] Z. Liu, An inequality of Simpson type, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. Vol.461, No.2059, (2005), pp.2155-2158.
- [4] J. Park, Generalizations of Simpson-like type inequality for co-ordinated s -convex mappings in the second sense, International Journal of Mathematics and Mathematical Sciences, 2012 (2012), Article ID 715751, 16 pages; doi:10.1155/2012/715751.
- [5] M. Alomari and M. Darus, Co-ordinated *s* -convex function in the first sense with some Hadamard-type inequality, Int. J. Contemp. Math. Sci. 3 Vol.3, No.29-32, (2008), pp.1557-1567.
- [6] S.S. Dragomir, On Hadamard's inequality for co-ordinated convex function in a rectangle from the plane, J. Inequal. Appl. Vol.5, No.5, (2011), pp.775-788.
- [7] J. Park, Generalizations of Simpson's type inequality for twice differentiable convex mapping, Far East J. Math. Sci. Vol.52, No.1, (2011), pp.43-55.
- [8] M.A. Latif and M. Alomari, On Hadmard-type inequalities for **h**-convex functions on the co-ordinates. Int. J. Math. Anal. Vol.33, No.3, (2009), pp.1645--1656.
- [9] S.S. Dragomir, Selected Topics on Hermite-Hadamard Inequality and Applications, RGMIA Monographs, Victoria University, 2000; Available online at http://rgmia.org/monographs/hermite_hadamard.html.
- [10] M. Alomari and M. Darus, *The Hadamard's inequality for s -convex function of 2-variables on the co-ordinates*, Int. J. Math. Anal. Vol.13, No.2, (2008), pp. 629--638.
- [11] J. Park, Some Hadamard's type inequality for co-ordinated (s,m) -convex mapping in the second sense. Far East J. Math. Sci. Vol.51, No.2, (2011), pp.205--216.