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Abstract

In this paper, we investigate some properties of finite order transcendental meromorphic solutions of difference Painlevé I and II equations,
and obtain precise estimations of exponents of convergence of poles of difference ∆w(z) = w(z+1)−w(z) and divided difference ∆w(z)

w(z) , and
of fixed points of w(z+η) (η ∈ C\{0}).
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1. Introduction and Results

In this paper, we assume that the reader is familiar with the basic
Nevanlinna’s value distribution theory of meromorphic functions
(see[2,10]). In addition, we use the notation σ( f ) to denote the
order of growth of the meromorphic function f (z), λ ( f ) and λ ( 1

f )
to denote, respectively, the exponent of convergence of zeros and
poles of f (z). We also use the notation τ( f ) to denote the exponent
of convergence of fixed points of f (z) which is defined as

τ( f ) = limsup
r→∞

logN
(

r, 1
f (z)−z

)
logr

.

We denote by S(r, f ) any quantify satisfying S(r, f ) = o(T (r, f )), as
r→ ∞, possibly outside a set with finite measure.
Recently, a number of papers (including [3− 9,11− 14]) have fo-
cused on complex difference equations and difference analogues of
Nevanlinna’s theory. As the difference analogues of Nevanlinna’s
theory are investigated [8,12], many results on the complex differ-
ence equations are rapidly obtained.
Halburd and Korhonen [9] used value distribution theory and a rea-
soning related to the singularity confinement to single out the differ-
ence Painlevé I and II equations from difference equation

w(z+1)+w(z−1) = R(z,w), (1.1)

where R is rational in both of its arguments. They proved that if (1.1)
has an admissible meromorphic solutions of finite order, then either
w satisfies a difference Riccati equation, or (1.1) may be transformed
into some classical difference equations, which include difference
Painlevé I equations

w(z+1)+w(z−1) =
az+b
w(z)

+ c, (1.2)

w(z+1)+w(z−1) =
az+b
w(z)

+
c

w2(z)
, (1.3)

w(z+1)+w(z)+w(z−1) =
az+b
w(z)

+ c, (1.4)

and difference Painlevé II equation

w(z+1)+w(z−1) =
(az+b)w(z)+ c

1−w2(z)
, (1.5)

where a,b and c are constants.
In 2010, Chen and Shon [13] investigated some properties of mero-
morphic solutions of difference Painlevé I equation (1.2) and differ-
ence Painlevé II equation (1.5), and proved the following results.
Theorem B. (See [13]) Let a,b,c be constants with ac 6= 0. If
w(z) is a finite-order transcendental meromorphic solution of the
difference Painlevé II equation (1.5), then:
(i) w(z) has at most one non-zero finite Borel exceptional value;
(ii) λ

( 1
w
)
= λ (w) = σ(w);

(iii) w(z) has infinitely many fixed points and satisfies τ(w) = σ(w).
Theorem C. (See [13]) Let a,b,c be constants with a 6= 0. If w(z) is
a finite-order transcendental meromorphic solution of the difference
Painlevé I equation (1.2), then
(i) w(z) has at most one non-zero finite Borel exceptional value;
(ii) λ

( 1
w
)
= λ (w) = σ(w);

(iii) w(z) has infinitely many fixed points and satisfies τ(w) = σ(w).
In 2011, Chen [14] investigated some properties of meromorphic
solutions of difference Painlevé I equation (1.3) and obtained the
following result.
Theorem D. (See [14]) Let a,b,c be constants such that ac 6= 0.
Suppose that w(z) is a finite-order transcendental meromorphic so-
lution of the difference Painlevé I equation (1.3), then
(i) w(z) has no any Borel exceptional value;
(ii) If p(z) is a non-constant polynomial, then w(z)− p(z) has in-
finitely many zeros and satisfies λ (w− p) = σ(w).
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In 2012, Chen and Chen [7] investigated some properties of mero-
morphic solutions of difference Painlevé I equation (1.4) and proved
the following result.
Theorem E. (See [7]) Let a,b,c be constants such that |a|+ |b| 6= 0.
If w(z) is a finite-order transcendental meromorphic solution of the
difference Painlevé I equation (1.4), then:
(i) λ

( 1
w
)
= λ (w) = σ(w);

(ii) If p(z) is a non-constant polynomial, then w(z)− p(z) has in-
finitely many zeros and satisfies λ (w− p) = σ(w).
(iii) If a 6= 0, then w(z) has no Borel exceptional value;
If a = 0, then the Borel exceptional value of w(z) can only come

from a set E = {z|3z2− cz−b = 0}.
In this paper, we consider some properties of difference and divided
difference of transcendental meromorphic solutions of the difference
Painlevé I equations (1.2)− (1.4) and Painlevé II equation (1.5),
and obtain the following results.

Theorem 1.1. Let a,b,c be constants with |a|+ |b| 6= 0. If w(z) is
a finite-order transcendental meromorphic solution of the difference
Painlevé I equation (1.2), then

(i) λ
( 1

∆w
)
= λ

(
1

∆w
w

)
= σ(w);

(ii) For any η ∈ C\{0}, τ(w(z+η)) = σ(w).

Theorem 1.2. Let a,b,c be constants with |a|+ |b|+ |c| 6= 0. If
w(z) is a finite-order transcendental meromorphic solution of the
difference Painlevé I equation (1.3), then

(i) λ
( 1

∆w
)
= λ

(
1

∆w
w

)
= σ(w);

(ii) For any η ∈ C\{0}, τ(w(z+η)) = σ(w).

Theorem 1.3. Let a,b,c be constants with |a|+ |b| 6= 0. If w(z) is
a finite-order transcendental meromorphic solution of the difference

Painlevé I equation (1.4), then λ
( 1

∆w
)
= λ

(
1

∆w
w

)
= σ(w).

Theorem 1.4. Let a,b,c be constants with |a|+ |b|+ |c| 6= 0. If
w(z) is a finite-order transcendental meromorphic solution of the
difference Painlevé II equation (1.5), then

(i) λ
( 1

∆w
)
= λ

(
1

∆w
w

)
= σ(w);

(ii) For any η ∈ C\{0}, τ(w(z+η)) = σ(w).

Remark 1.1. From the proofs of Theorems 1.1−1.4, we can also
obtain that λ

( 1
w
)
= σ(w) and σ

(
∆w
w

)
= σ(∆w) = σ(w).

Remark 1.2. Generally, τ(w(z + η)) 6= τ(w(z)), where η ∈
C\{0}. For example, w(z) = ez + z, w(z+ 1) = eez + z+ 1, w(z)
has no any fixed points and τ(w(z)) = 0, but w(z+1) has infinitely
many fixed points and satisfies τ(w(z+1)) = σ(w(z)) = 1.

Example 1.1. The meromorphic function w(z) = eiπz−1
eiπz+1 satisfies

the difference Painlevé I equation

w(z+1)+w(z−1) =
2

w(z)
,

with a = c = 0,b = 2 satisfying |a|+ |b|= 2(6= 0). We see that

∆w(z) =
eiπ(z+1)−1
eiπ(z+1)+1

− eiπz−1
eiπz +1

=
4eiπz

ei2πz−1
,

∆w(z)
w(z)

=
4eiπz

ei2πz−1
· e

iπz +1
eiπz−1

=
4eiπz

(eiπz−1)2 ,

w(z+η)− z =
eiπ(z+η)−1
eiπ(z+η)+1

− z =
eiπ(z+η)(1− z)− (z+1)

eiπ(z+η)+1
.

Then, λ
( 1

∆w
)
= λ

(
1

∆w
w

)
=σ(w) = 1, λ (∆w) = λ

(
∆w
w

)
= 0. For

any η ∈ C\{0}, we have τ(w(z+η)) = σ(w) = 1.

Example 1.2. The meromorphic function w(z) = 1
ei2πz+z+1 satis-

fies the difference Painlevé II equation

w(z+1)+w(z−1) =
2w(z)

1−w2(z)
,

with a = c = 0,b = 2 satisfying |a|+ |b|+ |c|= 2(6= 0). We see that

∆w(z)=
1

ei2πz + z+2
− 1

ei2πz + z+1
=

−1
(ei2πz + z+2)(ei2πz + z+1)

,

∆w(z)
w(z)

=
−1

(ei2πz + z+2)(ei2πz + z+1)
·(ei2πz+z+1)=

−1
ei2πz + z+2

,

w(z+η)− z =
1

ei2π(z+η)+ z+η +1
− z

=
−zei2π(z+η)− (z2 +(η +1)z−1)

ei2π(z+η)+ z+η +1
.

Then, λ
( 1

∆w
)
= λ

(
1

∆w
w

)
=σ(w) = 1, λ (∆w) = λ

(
∆w
w

)
= 0. For

any η ∈ C\{0}, we have τ(w(z+η)) = σ(w) = 1.

2. Some Lemmas

In order to prove our conclusions, we need the following lemmas.

Lemma 2.1. (See [1], [2, Theorem 2.2.5]) Let f (z) be a mero-
morphic function. Then for all irreducible rational functions in
f (z),

R(z, f (z)) =
∑

m
i=0 ai(z) f (z)i

∑
n
j=0 b j(z) f (z) j ,

with meromorphic coefficients ai(z),b j(z)(am(z)bn(z) 6≡ 0) being
small with respect to f (z), the characteristic function of R(z, f (z))
satisfies

T (r,R(z, f (z))) = max{m,n}T (r, f )+S(r, f ).

Lemma 2.2. (See [3, Theorem 2.4], [8]) Let f be a transcendental
meromorphic solution of finite order σ of the difference equation

P(z, f ) = 0,

where P(z, f ) is a difference polynomial in f (z) and its shifts. If
P(z,a) 6≡ 0 for a slowly moving target meromorphic function a, that
is, T (r,a) = S(r, f ), then

m
(

r,
1

f −a

)
= O(rσ−1+ε )+S(r, f ),

outside of a possible exceptional set of finite logarithmic measure.

Lemma 2.3. (See [3, Theorem 2.3], [8]) Let f be a transcendental
meromorphic solution of finite order σ of a difference equation of
the form

U(z, f )P(z, f ) = Q(z, f ),

where U(z, f ),P(z, f ) and Q(z, f ) are difference polynomials such
that the total degree deg f U(z, f ) = n in f (z) and its shifts, and
deg f Q(z, f ) ≤ n. Moreover, we assume U(z, f ) contains just one
term of maximal total degree in f (z) and its shifts. Then for each
ε > 0,

m(r,P(z, f )) = O(rσ−1+ε )+S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.4. (See [12, Corollary 2.5]) Let f (z) be a meromorphic
function of finite order σ and let η be a non-zero complex number.
Then for each ε > 0, we have

m
(

r,
f (z+η)

f (z)

)
+m

(
r,

f (z)
f (z+η)

)
= O(rσ−1+ε ).
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Lemma 2.5. (See [12, Theorem 2.1]) Let f (z) be a meromorphic
function with order σ = σ( f ),σ <+∞, and let η be a fixed non-zero
complex number, then for each ε > 0, we have

T (r, f (z+η)) = T (r, f (z))+O(rσ−1+ε )+O(logr).

Lemma 2.6. (See [12, Theorem 2.2]) Let f be a meromorphic
function with exponent of convergence of poles λ

(
1
f

)
= λ < ∞,η 6=

0 be fixed, then for each ε > 0,

N(r, f (z+η)) = N(r, f (z))+O(rλ−1+ε )+O(logr).

3. Proof of Theorems

Proof of Theorem 1.1

(i) Firstly, we will prove λ

(
1

∆w
w

)
= σ(w). By equation (1.2),

Lemma 2.1, Lemma 2.5 and |a|+ |b| 6= 0, we have

2T (r,w(z)) = T
(

r,
az+b+ cw(z)

w2(z)

)
+O(logr)

= T
(

r,
w(z+1)+w(z−1)

w(z)

)
+O(logr)

≤ T
(

r,
w(z+1)

w(z)

)
+T

(
r,

w(z)
w(z−1)

)
+O(logr)

= 2T
(

r,
w(z+1)

w(z)

)
+S

(
r,

w(z+1)
w(z)

)
+O(logr)

≤ 2T
(

r,
w(z+1)

w(z)

)
+S(r,w)

= 2T
(

r,
∆w(z)
w(z)

)
+S(r,w),

that is,

T (r,w)≤ T
(

r,
∆w(z)
w(z)

)
+S(r,w). (3.1)

It follows from (3.1) and Lemma 2.4 that

N
(

r,
∆w(z)
w(z)

)
= T

(
r,

∆w(z)
w(z)

)
−m

(
r,

∆w(z)
w(z)

)
≥ T (r,w(z))+S(r,w).

Thus, λ

(
1

∆w
w

)
≥ σ(w), that is λ

(
1

∆w
w

)
= σ(w).

Next, we prove λ
( 1

∆w
)
= σ(w). By equation (1.2),

∆w(z)−∆w(z−1) = w(z+1)+w(z−1)−2w(z)

=
az+b
w(z)

+ c−2w(z)

=
az+b+ cw(z)−2w2(z)

w(z)
.

(3.2)

From (3.2), Lemma 2.1, Lemma 2.5 and |a|+ |b| 6= 0, we have

2T (r,w(z)) = T
(

r,
az+b+ cw(z)−2w2(z)

w(z)

)
+O(logr)

= T (r,∆w(z)−∆w(z−1))+O(logr)

≤ T (r,∆w(z))+T (r,∆w(z−1))+O(logr)

= 2T (r,∆w(z))+S(r,∆w(z))+O(logr)

≤ 2T (r,∆w(z))+S(r,w),

that is,
T (r,w(z))≤ T (r,∆w(z))+S(r,w). (3.3)

It follows from Lemma 2.5 that

T (r,∆w(z))≤ T (r,w(z+1))+T (r,w(z))+O(1)

= 2T (r,w(z))+S(r,w)
(3.4)

By equation (1.2), we obtain

w(z)(w(z+1)+w(z−1)) = az+b+ cw(z). (3.5)

From (3.5) and Lemma 2.3, we see that for each ε > 0, there is a
subset E1 ⊂ (1,∞) having finite logarithmic measure such that for
|z|= r 6∈ [0,1]∪E1,

m(r,w(z+1)+w(z−1)) = O(rσ(w)−1+ε )+S(r,w). (3.6)

It follows from equation (1.2), Lemma 2.1 and |a|+ |b| 6= 0 that

T (r,w(z+1)+w(z−1)) = T
(

az+b
w(z)

+ c
)
= T (r,w)+S(r,w).

(3.7)
From (3.6), (3.7) and Lemma 2.6, we obtain

T (r,w(z))+S(r,w) = N(r,w(z+1)+w(z−1))

≤ N(r,w(z+1))+N(r,w(z−1)) = 2N(r,w(z))+S(r,w).
(3.8)

It follows from Lemma 2.4 that

m(r,∆w(z))≤ m
(

r,
∆w(z)
w(z)

)
+m(r,w(z)) = m(r,w(z))+S(r,w).

(3.9)
From (3.3)− (3.4) and (3.8)− (3.9), we see

N(r,∆w(z)) = T (r,∆w(z))−m(r,∆w(z))

≥ T (r,∆w(z))− (T (r,w(z))

−1
4

T (r,∆w(z)))+S(r,w)

=
5
4

T (r,∆w(z))−T (r,w(z))+S(r,w)

≥ 1
4

T (r,w(z))+S(r,w).

Thus, λ
( 1

∆w
)
≥ σ(w), that is λ

( 1
∆w

)
= σ(w).

(ii) For any η ∈ C\{0}, substituting z+η into equation (1.2), we
obtain

w(z+η +1)+w(z+η−1) =
a(z+η)+b

w(z+η)
+ c. (3.10)

Set g(z) = w(z+η). Rewriting equation (3.10) as

g(z)(g(z+1)+g(z−1)) = cg(z)+(a(z+η)+b).

Denote

P1(z,g) := g(z)(g(z+1)+g(z−1))− cg(z)− (a(z+η)+b) = 0.

Then, we have

P1(z,z) = z(z+1+ z−1)− cz− (a(z+η)+b)

= 2z2− (a+ c)z− (aη +b) 6≡ 0.

From P1(z,z) 6≡ 0 and Lemma 2.2, we see

m
(

r,
1

g(z)− z

)
= S(r,g).

Thus, by Lemma 2.5, we have

N
(

r,
1

w(z+η)− z

)
= N

(
r,

1
g(z)− z

)
= T (r,g)+S(r,g)

= T (r,w(z+η))+S(r,w(z+η))

= T (r,w(z))+S(r,w).

Hence, for any η ∈ C\{0}, τ(w(z+η)) = σ(w).
This completes the proof of Theorem 1.1.
Proof of Theorem 1.2
If c = 0, equation (1.3) is a special case of equation (1.2). In what
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follows, we assume c 6= 0. (i) Firstly, we will prove λ

(
1

∆w
w

)
=σ(w).

By equation (1.3), Lemma 2.1, Lemma 2.5 and c 6= 0, we have

3T (r,w(z)) = T
(

r,
(az+b)w(z)+ c

w3(z)

)
+O(logr)

= T
(

r,
w(z+1)+w(z−1)

w(z)

)
+O(logr)

≤ 2T
(

r,
∆w(z)
w(z)

)
+S(r,w),

that is,
3
2

T (r,w(z))≤ T
(

r,
∆w(z)
w(z)

)
+S(r,w). (3.11)

It follows from (3.11) and Lemma 2.4 that

N
(

r,
∆w(z)
w(z)

)
= T

(
r,

∆w(z)
w(z)

)
−m

(
r,

∆w(z)
w(z)

)
≥ 3

2
T (r,w(z))+S(r,w).

Thus, λ

(
1

∆w
w

)
≥ σ(w), that is λ

(
1

∆w
w

)
= σ(w).

Next, we prove λ
( 1

∆w
)
= σ(w). By equation (1.3),

∆w(z)−∆w(z−1) =
c+(az+b)w(z)−2w3(z)

w2(z)
. (3.12)

From (3.12), Lemma 2.1, Lemma 2.5 and c 6= 0, we have

3T (r,w(z)) = T
(

r,
c+(az+b)w(z)−2w3(z)

w2(z)

)
+O(logr)

= T (r,∆w(z)−∆w(z−1))+O(logr)

≤ 2T (r,∆w(z))+S(r,w),

that is,
3
2

T (r,w(z))≤ T (r,∆w(z))+S(r,w). (3.13)

By Lemma 2.4,

m(r,∆w(z)) = m
(

r,
∆w(z)
w(z)

)
+m(r,w(z))≤ T (r,w(z))+S(r,w).

(3.14)
It follows from (3.13) and (3.14) that

N(r,∆w(z)) = T (r,∆w(z))−m(r,∆w(z))

≥ 3
2

T (r,w(z))−T (r,w(z))+S(r,w)

=
1
2

T (r,w(z))+S(r,w).

Thus, λ
( 1

∆w
)
≥ σ(w), that is λ

( 1
∆w

)
= σ(w).

(ii) For any η ∈ C\{0}, substituting z+η into equation (1.3), we
obtain

w(z+η +1)+w(z+η−1) =
a(z+η)+b

w(z+η)
+

c
w(z+η)2 . (3.15)

Set g(z) = w(z+η). Then (3.15) can be rewritten as

g2(z)(g(z+1)+g(z−1)) = g(z)(a(z+η)+b)+ c.

Denote

P2(z,g) := g2(z)(g(z+1)+g(z−1))−g(z)(a(z+η)+b)− c = 0.

Then, we have

P2(z,z) = z2(z+1+ z−1)− z(a(z+η)+b)− c 6≡ 0.

From P2(z,z) 6≡ 0 and Lemma 2.2, we see

m
(

r,
1

g(z)− z

)
= S(r,g).

Thus, by Lemma 2.5, we have

N
(

r,
1

w(z+η)− z

)
= N

(
r,

1
g(z)− z

)
= T (r,g)+S(r,g)

= T (r,w(z+η))+S(r,w(z+η))

= T (r,w)+S(r,w).

Hence, for any η ∈ C\{0}, τ(w(z+η)) = σ(w).
This completes the proof of Theorem 1.2.
Proof of Theorem 1.3
Using the same method as the proof of Theorem 1.1, we can easily

obtain λ

(
1

∆w
w

)
= λ (∆w) = σ(w).

Proof of Theorem 1.4
(i) In what follows, we consider three cases: Case 1, c = 0; Case
2, c 6= 0, either a = 0,b− c = 0, or a = 0,b+ c = 0; Case 3, c 6= 0,
either a 6= 0, or b− c 6= 0, or b+ c 6= 0.

Case 1, c = 0. Firstly, we prove we prove λ

(
1

∆w
w

)
= σ(w). By

equation (1.5), Lemma 2.1, Lemma 2.5 and |a|+ |b| 6= 0, we have

2T (r,w(z)) = T
(

r,
az+b

1−w2(z)

)
+O(logr)

= T
(

r,
w(z+1)+w(z−1)

w(z)

)
+O(logr)

≤ 2T
(

r,
∆w(z)
w(z)

)
+S(r,w),

that is,

T (r,w(z))≤ T
(

r,
∆w(z)
w(z)

)
+S(r,w). (3.16)

It follows from (3.16) and Lemma 2.4 that

N
(

r,
∆w(z)
w(z)

)
= T

(
r,

∆w(z)
w(z)

)
−m

(
r,

∆w(z)
w(z)

)
≥ T (r,w(z))+S(r,w).

Thus, λ

(
1

∆w
w

)
≥ σ(w), that is λ

(
1

∆w
w

)
= σ(w).

Next, we prove λ
( 1

∆w
)
= σ(w). By equation (1.5),

∆w(z)−∆w(z−1) =
2w3(z)+(az+b−2)w(z)

1−w2(z)
. (3.17)

From (3.17), Lemma 2.1, Lemma 2.5 and |a|+ |b| 6= 0, we have

3T (r,w(z)) = T
(

r,
2w3(z)+(az+b−2)w(z)

1−w2(z)

)
+O(logr)

= T (r,∆w(z)−∆w(z−1))+O(logr)

≤ 2T (r,∆w(z))+S(r,w),

that is,
3
2

T (r,w(z))≤ T (r,∆w(z))+S(r,w). (3.18)

From (3.14) and (3.18), we have

N(r,∆w(z)) = T (r,∆w(z))−m(r,∆w)

≥ 3
2

T (r,w(z))−T (r,w(z))+S(r,w)

=
1
2

T (r,w(z))+S(r,w).

Thus, λ
( 1

∆w
)
≥ σ(w), that is λ

( 1
∆w

)
= σ(w).

Case 2, c 6= 0, either a = 0,b−c = 0, or a = 0,b+c = 0. We divide
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this proof into the following two subcases.

Case 2.1, c 6= 0, a = 0,b−c = 0. Firstly, we prove λ

(
1

∆w
w

)
= σ(w).

By equation (1.5), Lemma 2.1, Lemma 2.5 and b = c(6= 0), we have

2T (r,w(z)) = T
(

r,
b

w(z)(1−w(z))

)
+O(1)

= T
(

r,
w(z+1)+w(z−1)

w(z)

)
+O(1)

≤ 2T
(

r,
∆w(z)
w(z)

)
+S(r,w),

hence,

T (r,w(z))≤ T
(

r,
∆w(z)
w(z)

)
+S(r,w). (3.19)

From (3.19) and Lemma 2.4, we see

N
(

r,
∆w(z)
w(z)

)
= T

(
r,

∆w(z)
w(z)

)
−m

(
r,

∆w(z)
w(z)

)
≥ T (r,w(z))+S(r,w).

Thus, λ

(
1

∆w
w

)
≥ σ(w), that is λ

(
1

∆w
w

)
= σ(w).

Next, we prove λ
( 1

∆w
)
= σ(w). By equation (1.5),

∆w(z)−∆w(z−1) =
2w2(z)−2w(z)+b

1−w(z)
. (3.20)

From (3.20), Lemma 2.1, Lemma 2.5 and b = c(6= 0), we have

2T (r,w(z)) = T
(

r,
2w2(z)−2w(z)+b

1−w(z)

)
+O(1)

= T (r,∆w(z)−∆w(z−1))+O(1)

≤ 2T (r,∆w(z))+S(r,w),

that is,
T (r,w(z))≤ T (r,∆w(z))+S(r,w). (3.21)

By equation (1.5), we obtain

w(z)(w(z+1)+w(z−1)) = w(z+1)+w(z−1)−b. (3.22)

From (3.22) and Lemma 2.3, we see that for each ε > 0, there is a
subset E2 ⊂ (1,∞) having finite logarithmic measure such that for
|z|= r 6∈ [0,1]∪E2,

m(r,w(z+1)+w(z−1)) = O(rσ(w)−1+ε )+S(r,w). (3.23)

By equation (1.5), Lemma 2.1 and b = c(6= 0), we see

T (r,w(z+1)+w(z−1)) = T
(

b
1−w(z)

)
= T (r,w)+S(r,w).

(3.24)
From (3.23), (3.24) and Lemma 2.6, we obtain

T (r,w(z))+S(r,w) = N(r,w(z+1)+w(z−1))

≤ 2N(r,w(z))+S(r,w)
(3.25)

From (3.4), (3.9), (3.21) and (3.25), we see

N(r,∆w(z)) = T (r,∆w(z))−m(r,∆w(z))

≥ T (r,∆w(z))− (T (r,w(z))

−1
4

T (r,∆w(z)))+S(r,w)

=
5
4

T (r,∆w(z))−T (r,w(z))+S(r,w)

≥ 1
4

T (r,w(z))+S(r,w).

Thus, λ
( 1

∆w
)
≥ σ(w), that is λ

( 1
∆w

)
= σ(w).

Case 2.2, c 6= 0, a = 0,b+ c = 0. Using the same method as the

proof of subcase 2.1, we can also obtain λ
( 1

∆w
)
= λ

(
1

∆w
w

)
=σ(w);

Case 3, c 6= 0, either a 6= 0, or b− c 6= 0, or b+ c 6= 0. Firstly, we

prove λ

(
1

∆w
w

)
= σ(w). By equation (1.5), Lemma 2.1, Lemma 2.5

and c 6= 0, either a 6= 0, or b− c 6= 0, or b+ c 6= 0, we have

3T (r,w(z)) = T
(

r,
(az+b)w(z)+ c
w(z)(1−w2(z))

)
+O(logr)

= T
(

r,
w(z+1)+w(z−1)

w(z)

)
+O(logr)

≤ 2T
(

r,
∆w(z)
w(z)

)
+S(r,w),

that is,
3
2

T (r,w(z))≤ T
(

r,
∆w(z)
w(z)

)
+S(r,w). (3.26)

From (3.26) and Lemma 2.4, we see

N
(

r,
∆w(z)
w(z)

)
= T

(
r,

∆w(z)
w(z)

)
−m

(
r,

∆w(z)
w(z)

)
≥ 3

2
T (r,w(z))+S(r,w).

Thus, λ

(
1

∆w
w

)
≥ σ(w), that is λ

(
1

∆w
w

)
= σ(w).

Next, we prove λ
( 1

∆w
)
= σ(w). By equation (1.5),

∆w(z)−∆w(z−1) =
2w3(z)+(az+b−2)w(z)+ c

1−w2(z)
. (3.27)

From (3.27), Lemma 2.1, Lemma 2.5 and c 6= 0, either a 6= 0, or
b− c 6= 0, or b+ c 6= 0, we have

3T (r,w) = T
(

r,
2w3(z)+(az+b−2)w(z)+ c

1−w2(z)

)
+O(logr)

= T (r,∆w(z)−∆w(z−1))+O(logr)

≤ 2T (r,∆w(z))+S(r,w),

that is,
3
2

T (r,w(z))≤ T (r,∆w(z))+S(r,w). (3.28)

From (3.14) and (3.28), we have

N(r,∆w(z)) = T (r,∆w(z))−m(r,∆w(z))

≥ 3
2

T (r,w(z))−T (r,w(z))+S(r,w)

=
1
2

T (r,w(z))+S(r,w).

Thus, λ
( 1

∆w
)
≥ σ(w), that is λ

( 1
∆w

)
= σ(w).

(ii) For any η ∈ C\{0}, substituting z+η into equation (1.5), we
obtain

w(z+η+1)+w(z+η−1)=
(a(z+η)+b)w(z+η)+ c

1−w(z+η)2 , (3.29)

Set g(z) = w(z+η). Then (3.29) can be rewritten as

(1−g2(z))(g(z+1)+g(z−1)) = g(z)(a(z+η)+b)+ c.

Denote

P3(z,g) := (1−g2(z))(g(z+1)+g(z−1))

−g(z)(a(z+η)+b)− c = 0.

Then, we have

P3(z,z) = (1− z2)(z+1+ z−1)− z(a(z+η)+b)− c 6≡ 0.
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From P3(z,z) 6≡ 0 and Lemma 2.2, we see that

m
(

r,
1

g(z)− z

)
= S(r,g).

Thus, by Lemma 2.5, we have

N
(

r,
1

w(z+η)− z

)
= N

(
r,

1
g(z)− z

)
= T (r,g)+S(r,g)

= T (r,w(z+η))+S(r,w(z+η))

= T (r,w(z))+S(r,w).

Hence, for any η ∈ C\{0}, τ(w(z+η)) = σ(w).
This completes the proof of Theorem 1.4.
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