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Abstract

It is proved that if a smooth function u(x), x ∈ R3, such that infs∈S |uN(s)|> 0, where uN is the normal derivative of u on S, has a closed
smooth surface S of zeros, then the function u(x)+ εv(x) has also a closed smooth surface Sε of zeros. Here v is a smooth function and
ε > 0 is a sufficiently small number.
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1. Introduction

Let D ⊂ R3 be a bounded domain containing inside a connected
closed C3−smooth surface S, which is the set of zeros of a function
u ∈C3(D), so that

u|S = 0. (1)

Let N =Ns be the unit normal to S, such that uN = |∇u(s)|, where uN
is the normal derivative of u on S. Let uε := u+εv, where v∈C3(D)
and ε > 0 is sufficiently small. Assume that

inf
s∈S
|∇u(s)| ≥ 2c1 > 0, c1 = const > 0. (2)

The purpose of this paper is to prove Theorem 1.
Theorem 1. Under the above assumptions there exists a smooth
closed surface Sε such that uε = 0 on Sε .
In Section 2 Theorem 1 is proved.
Although there are many various results on perturbation theory, see
[2], [3], the result formulated in Theorem 1 is new.

2. Proof of Theorem 1

Consider the following equation for t:

u(s+ tN)+ εv(s+ tN) = 0, (3)

where N = N(s) is the normal to S at the point s and t is a parameter.
Using the Taylor’s formula and relation (1), one gets from (3)

t
(

∇u(s) ·N + ε∇v(s) ·N
)
+ εv(s)+ t2

φ = 0, (4)

where t2φ is the Lagrange remainder in the Taylor’s formula and

φ :=
3

∑
i, j=1

[uxix j (s+θ tN)+ εvxix j (s+θ tN)]NiN j, θ ∈ (0,1). (5)

Since the functions u and v belong to C3(D), the function φ =
φ(t,s,ε) has a bounded derivative with respect to t uniformly with
respect to s ∈ S and ε ∈ (0,1].

Consider equation (4) as an equation for t = t(s) in the space C(S).
Rewrite (4) as

t =− ε

(
∇u(s) ·N + ε∇v(s) ·N

)−1
v(s)−

− t2
φ

(
∇u(s) ·N + ε∇v(s) ·N

)−1
:= Bt.

(6)

Let us check that the operator B satisfies the contraction mapping
theorem in the set

M := {t : maxs∈S|t(s)−ε

(
∇u(s) ·N+ε∇v(s) ·N

)−1
v(s)| ≤ δ}, (7)

where δ > 0 is a small number, and M ⊂C(S).
First, one should check that B maps M into itself. One has

maxs∈S|Bt(s)− ε

(
∇u(s) ·N + ε∇v(s) ·N

)−1
v(s)| ≤

≤ maxs∈S
t2|φ |

∇u(s) ·N + ε∇v(s) ·N
.

(8)

We have chosen N so that ∇u(s) ·N = |∇u(s)|. This is possible
because equation (1) implies that ∇u(s) is orthogonal to S at the
point s ∈ S. Assumption (2) implies that for sufficiently small ε one
has

inf
s∈S
|∇uε (s)| ≥ c1. (9)

Since φ is continuously differentiable, one has

sup
s∈S,t∈(0,1)

|φ(t,s,ε)| ≤ c2. (10)

Therefore, if

|t(s)| ≤ δ , (11)

then

t2(s)|φ(t,s,ε)|
|∇u(s)|+ ε∇v(s) ·N

≤ c2

c1
δ

2 ≤ δ , (12)
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provided that

c2

c1
δ ≤ 1. (13)

Thus, if (13) holds then B maps M into itself.
Let us check that B is a contraction mapping on M. One has

|Bt1−Bt2| ≤ c−1
1 |t

2
1 φ(t1,s,ε)− t2

2 φ(t2,s,ε)| ≤ c3|t1− t2|, (14)

where c3 ∈ (0,1) if δ is sufficiently small. Indeed,

c3 = maxs∈S,t≤δ

(
2t|φ(t,s,ε)|+ t2|∂φ

∂ t
|
)
≤ c4δ < 1, (15)

if δ is sufficiently small. Here c4 is a constant.
Thus, B is a contraction on M. By the contraction mapping principle,
equation (6) is uniquely solvable for t. Its solution t = t(s) allows
one to construct the zero surface Sε of the function uε by the equation
r = s+ t(s)N, where r = r(s) is the radius vector of the points on Sε .
Theorem 1 is proved. 2

Remark 1. Condition (2) is a sufficient condition for the validity
of Theorem 1. Although this condition is not necessary, if it does
not hold one can construct counterexamples to the conclusion of
Theorem 1. For example, assume that u(x)≥ 0 in R3 and u(x) = 0
on S, let v > 0 in R3 and ε > 0. Then the function uε = u+ εv does
not have zeros in R3.
Remark 2. In scattering theory the following question is of in-
terest: assume that u(x) is an entire function of exponential type,
u(x) =

∫
S2 eikβ ·x f (β )dβ , where f ∈ L2(S2), S2 is the unit sphere in

R3. Assume that u = 0 on S, where S is a bounded closed smooth
connected surface in R3.
The question of interest is:
Is there a bounded closed smooth connected surface of zeros of
an entire function uε of exponential type, uε =

∫
S2 eikβ ·x[ f (β ) +

εg(β )]dβ , where g ∈ L2(S2) and ε > 0 is a small parameter?
We will not use Theorem 1 since assumption (2) may not hold, but
sketch an argument, based on the fact that S in the above question is
the intersection of an analytic set with R3, see, for example, [1] for
the definition and properties of analytic sets. The functions u and uε

in Remark 2 solve the differential equation

∇
2u+ k2u = 0 in R3, k2 = const > 0. (16)

The function uN may vanish on S at most on the closed set σ ⊂ S
which is of the surface measure zero (by the uniqueness of the
solution to the Cauchy problem for equation (16)). For every point
s ∈ S \σ the argument given in the proof of Theorem 1 yields the
existence of t(s), the unique solution to (6). Since S is real analytic,
the set S̃ε , defined in the proof of Theorem 1, is analytic and S̃ε

is a part of the analytic set defined by the equation uε = 0. In our
problem S is a bounded closed real analytic surface. We guess that
the set S̃ε can be continued analytically to an analytic set which
intersects the real space R3 over a real analytic surface Sε . It is still
an open problem to prove (or disprove) that the analytic continuation
of the set S̃ε intersects R3 over a bounded closed real analytic surface
Sε ∈ R3.
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