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Abstract

In the paper, the authors supply alternative proofs for some summation formulas of trigonometric series.
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1. Introduction

In 2016, after establishing
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by means of telescoping method and after listing some formulas
from [2, p. 39], Chu [1] posed that there may exist summation
formulas for the trigonometric series
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where o, 8 ¢ {0,£1} and x # 0 are real constants.
It is obvious that
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where i denotes the imaginary unit in the complex numbers.
For o, B ¢ {0,£1}, ye N, x#0, and m € NU {0}, let
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It is clear that

1. U(a,B,1;x;00) =U(a, B;x) and V(a, B, 1;x;00) =V (@, B3 x);
2. when 0 < |o|] < 1, the infinite trigonometric series
U(a,B,7;x;0) and V(a, B, 7;x;00) are absolutely convergent;
3. when0< |B|<land0< |
series U (o, B, 7;x;00) is absolutely convergent.

In this paper, we supply alternative proofs for summation formu-
las (1.1) to (1.6) by means of discussing the trigonometric series

U(a,B,v:x;0) and V(a, B, 7;x;00).

2. Alternative proofs of the formulas (1.1)
to (1.6)

We now start out to prove those formulas (1.1) to (1.6) alternatively.
In [3, Corollary 2.1], Guo and Qi obtained

cos’x = (,Z<)cos 2q—0)x] 2.1

and

sinx = S f(—l)q (E) cos {(Zq—é)x— fn} (2.2)
28 5 q 2 ’
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for ¢ € N. Accordingly, when y € N, we have
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for k € {0} UN. Consequently, taking o = 4, B=2,and y=4in
the above expression for U (a, 3, ¥;x; o) leads to
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The formula (1.2) is thus recovered.
Similarly, we have
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The formula (1.3) is thus proved again.
Furthermore, we have
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The formulas (1.5) and (1.6) are verified once again.
By (2.2), it is straightforward that
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The formulas (1.4) and (1.1) are recovered alternatively. The proofs
of (1.1) to (1.6) are complete.

3. Remarks

Remark 3.1. By (2.3) and (2.4), it is not difficult to see that, in order
to find summation formulas for U (e, B, ;x;00) and V (@, B, ¥;x;0),
it is sufficient to find summation formulas for the trigonometric
series
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and

(B i) = X acos[(2g — 1]

n=1

for given ¥ € N and for all 0 < g < ¥. Since

u(a7B7 Y:q4;%; °°) = U(“?B; (2q - ’)/)X)

and
V((X,ﬁ, %q;X;w) = V((X,ﬁ; (2q - Y)x)v

it is sufficient to find summation formulas for the infinite trigono-
metric series U(a, §;x) and V (o, B;x).

Remark 3.2. In [3, Theorem 3.1], Guo and Qi obtained

k
k 1
sin(kx) = Z ( ) sin%r sin xcos ' x

(=0 ¢

and

k
k 11
cos(kx) = Z ( ) cos — sin’ xcos " x
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for k > 2. These two identities and the identities (2.1) and (2.2) can
be regarded as inversions each other.
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