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Abstract

In the paper, the authors present a criterion, free of considering differentiability and any partial derivative, to justify a holomorphic function
and illustrate the criterion by several examples.
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1. Main result

In the theory of complex functions, the usually used criterion to
justify a holomorphic function is considering differentiability of
real and imaginary parts and solvability of system of the Cauchy-
Riemann equations for a complex function.
The main aim of this paper is to present a criterion which can be
summarized as Theorems 1.1 and 1.2 below, free of considering
differentiability and any partial derivative, to justify a holomorphic
function.

Theorem 1.1. Let D ⊆ C be a domain such that the origin 0 ∈ D.
Then a complex function

f (z) = f (x+ iy) = u(x,y)+ iv(x,y) (1.1)

is holomorphic on D if and only if the functions

u(z,0), v(z,0), u(0,−iz), and v(0,−iz) (1.2)

are holomorphic and system of equations{
f (z) = u(z,0)+ iv(z,0);
f (z) = u(0,−iz)+ iv(0,−iz)

(1.3)

is valid on the domain D.

Theorem 1.2. Let D⊆ C be a domain and z0 = x0 + iy0 ∈ D. Then
a complex function f (z) expressed in (1.1) is holomorphic on D if
and only if the functions

u(z− iy0,y0), v(z− iy0,y0),

u(x0, i(x0− z)), v(x0, i(x0− z))
(1.4)

are holomorphic and the system of equations{
f (z) = u(z− iy0,y0)+ iv(z− iy0,y0);
f (z) = u(x0, i(x0− z))+ iv(x0, i(x0− z))

(1.5)

is valid on the domain D.

In next section, we will prove Theorems 1.1 and 1.2.
In the final section, we will take several examples, which are much
familiar for readers, to illustrate Theorems 1.1 and 1.2.
Theorems 1.1 and 1.2 generalize [3, pp. 182–183, Exercise 7].

2. Proofs of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Necessity. Taylor’s theorem [1, p. 177] reads
that, if f (z) is holomorphic in the region Ω, containing z0, then the
representation

f (z) =
∞

∑
k=0

f (k)(z0)

k!
(z− z0)

k (2.1)

is valid in the largest open disk of center z0 contained in Ω. Letting

z0 = 0 and assuming f (k)(0)
k! = Ak + iBk lead to

u(x,y)+ iv(x,y) =
∞

∑
k=0

(Ak + iBk)(x+ iy)k.

Taking y = 0 and x = 0 respectively in the above equation gives

u(x,0)+ iv(x,0) =
∞

∑
k=0

(Ak + iBk)x
k

and

u(0,y)+ iv(0,y) =
∞

∑
k=0

(Ak + iBk)(iy)
k.

Consequently, it follows that

u(x,0) =
∞

∑
k=0

Akxk, v(x,0) =
∞

∑
k=0

Bkxk,

u(0,y) =
∞

∑
k=0

(−1)kA2ky2k +
∞

∑
k=0

(−1)k+1B2k+1y2k+1,

v(0,y) =
∞

∑
k=0

(−1)k+1A2k+1y2k+1 +
∞

∑
k=0

(−1)kB2ky2k.
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This implies, by Taylor’s theorem and the important uniqueness
theorem (see [1, p. 279, Theorem 1]) that the four functions in (1.2)
are holomorphic.
Letting y = 0 and x = 0 respectively in (1.1) reveals that the equation
system{

f (x) = u(x,0)+ iv(x,0);
f (iy) = u(0,y)+ iv(0,y)

(2.2)

is valid for x,y ∈ (−δ ,δ ), where δ > 0. By the important unique-
ness theorem and by holomorphic property of the four functions
in (1.2), we see that the system (2.2) is valid on the whole domain
D. Consequently, replacing x by z and y by −iz in (2.2) figures out
the equation system (1.3).
The sufficiency is obvious. Theorem 1.1 is complete.

Proof of Theorem 1.2. If the origin 0 does not contain in the domain
D and the complex function f (z) is holomorphic on D, then we can
consider the function

F(w) = f (w+ z0) = f (p+ x0 + i(q+ y0))

= u(p+ x0,q+ y0)+ iv(p+ x0,q+ y0) = uz0(p,q)+ ivz0(p,q)

for

w = p+ iq ∈ Dz0 = {z− z0 : z0,z ∈ D}.

When we apply Theorem 1.1 to both the function F(w) and the
domain Dz0 , the equation system (1.3) becomes{

F(w) = uz0(w,0)+ ivz0(w,0);
F(w) = uz0(0,−iw)+ ivz0(0,−iw)

which is equivalent to{
f (w+ z0) = u(w+ x0,y0)+ iv(w+ x0,y0);
f (w+ z0) = u(x0,y0− iw)+ iv(x0,y0− iw)

for w = p+ iq ∈ Dz0 . Replacing w by z− z0 in the last equation
system results in{

f (z) = u(z− z0 + x0,y0)+ iv(z− z0 + x0,y0);
f (z) = u(x0,y0− i(z− z0))+ iv(x0,y0− i(z− z0))

for z ∈ D. Simplifying the above equations lead to (1.5). The proof
of Theorem 1.2 is complete.

3. Examples

To illustrate the criterion, we list several examples below.

3.1. Example

It is common knowledge in the theory of complex functions that the
complex functions

z = x− iy, |z|=
√

x2 + y2 , ℜ(z) = x, and ℑ(z) = y (3.1)

are not holomorphic everywhere on the whole complex plane C. This
can be verified by respectively considering solvability of the Cauchy-
Riemann equations and differentiability of real and imaginary parts
of the four functions in (3.1).
With the help of Theorem 1.1, due to the obvious fact that the
equation systems{

z = z;
z =−z,

{
|z|=

√
z2 ;

|z|=
√
−z2 ,

{
ℜ(z) = z;
ℜ(z) = 0,

and{
ℑ(z) = 0;
ℑ(z) =−iz

are respectively valid only at the origin 0, we immediately see that
all of the four functions in (3.1) are not holomorphic everywhere on
the complex plane C.
The above arguments show that Theorem 1.1 provides a simpler
criterion, without computing derivatives, to justify holomorphic
functions.

3.2. Example

Let

f (z) = u(x,y)+ iv(x,y) = x2 +axy+by2 + i
(
αx2 +βxy+y2) (3.2)

on C. By virtue of the Cauchy-Riemann equations, we can obtain
that, when

a = 2, b =−1, α =−1, and β = 2, (3.3)

the function f (z) is holomorphic on C. See [2, p. 43, Example 2].
Since

u(z,0) = z2, v(z,0) = αz2, u(0,−iz) =−bz2,

and

v(0,−iz) =−z2,

the equation system (1.3) becomes{
x2 +axy+by2 + i

(
αx2 +βxy+ y2)= (1+αi)z2;

x2 +axy+by2 + i
(
αx2 +βxy+ y2)=−(b+ i)z2 (3.4)

which is a linear system of equations in four variables a, b, α , and
β . The equation system (3.4) has the unique solution (3.3). By
Theorem 1.1, we reveal that, under the condition (3.3), the function
f (z) in (3.2) is holomorphic and can be easily rewritten in terms of
z, rather than x and y, as

f (z) = (1− i)z2

on the whole complex plane C.
The arguments tell us that, to justify a holomorphic function f (z), it
is sufficient to solve the equation system (1.3).

3.3. Example

It is general knowledge that the logarithmic function

f (z) = lnz = ln |z|+ iargz

is holomorphic on the cut plane A = C\ (−∞,0].
Taking any point z0 = x0 + y0 ∈ A and replacing in (1.5) f (z) by
the logarithmic function lnz gives{

lnz = ln |z− iy0 + iy0|+ iarg(z− iy0 + iy0) = lnz;
lnz = ln |x0 + i× i(x0− z)|+ iarg(x0 + i× i(x0− z)) = lnz

which is valid on the cut plane A . This implies, by Theorem 1.2,
that the logarithmic function lnz is holomorphic on the cut plane A .
Since the imaginary part of lnz is v(x,y) = argz = arg(x+ iy) on A ,
by Theorem 1.2, we further obtain that, for any z0 = x0 + iy0 ∈A ,
the functions

v(z− iy0,y0) = arg(z− iy0 + iy0) = argz

and

v(x0, i(x0− z)) = arg(x0− (x0− z)) = argz

are holomorphic on A . Simply speaking, the argument argz is
holomorphic on A .
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3.4. Example

Let

f (z) =
√

1+ z +
√

1− z (3.5)

on

D = C\ (−∞,−1]∪ [1,∞). (3.6)

It is a single-valued complex function clearly. See [1, p. 73, Exer-
cise 1].
A direct computation gives

f (x+ iy) = u(x,y)+ iv(x,y)

= 4
√

(x−1)2 + y2 cos
arg(1− x− iy)

2

+ 4
√
(x+1)2 + y2 cos

arg(1+ x+ iy)
2

+ i
[

4
√
(x−1)2 + y2 sin

arg(1− x− iy)
2

+ 4
√

(x+1)2 + y2 sin
arg(1+ x+ iy)

2

]
,

u(z,0) = 4
√

(z−1)2 cos
arg(1− z)

2
+ 4
√
(z+1)2 cos

arg(z+1)
2

,

v(z,0) = 4
√

(z−1)2 sin
arg(1− z)

2
+ 4
√

(z+1)2 sin
arg(z+1)

2
,

u(0,−iz) = 4
√

1− z2
[

cos
arg(1− z)

2
+ cos

arg(1+ z)
2

]
,

v(0,−iz) = 4
√

1− z2
[

sin
arg(1− z)

2
+ sin

arg(1+ z)
2

]
,

and the validity of the equation system (1.3) applying to the func-
tion (3.5) on D. Consequently, by virtue of Theorem 1.1, we see that
the function (3.5) is holomorphic on the domain (3.6).

3.5. Example

Suppose f (z) = u(x,y)+ iv(x,y) and its conjugate f (z) = u(x,y)−
iv(x,y) are all holomorphic on a domain D and let z0 = x0 + iy0 ∈D.
By virtue of Theorem 1.2, we see that the functions in (1.4) are
holomorphic and that the equation systems (1.5) and{

f (z) = u(z− iy0,y0)− iv(z− iy0,y0);
f (z) = u(x0, i(x0− z))− iv(x0, i(x0− z))

are valid. Hence, it follows that

u(x,y)− iv(x,y) = u(z− iy0,y0)− iv(z− iy0,y0)

= u(z− iy0,y0)− iv(z− iy0,y0)

= u(x0, i(x0− z))− iv(x0, i(x0− z))

= u(x0, i(x0− z))− iv(x0, i(x0− z)).

As a result, the functions in (1.4) are real constants on D, and so the
complex function f (z) and its conjugate f (z) are two constants.
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