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Abstract 

 

In this article, numerical modeling of a 2-D wave tank has been investigated by applying completely nonlinear 

condition for water surface elevation. This has been accomplished based on potential theory, the combined Eulerian-

Lagrangian scheme for time marching and using boundary element method. Other physical and numerical attributes of 

the current work are: physical modeling in time domain, time integration by 4th order Runge-Kutta method, 

implementation of appropriate condition at the entrance boundary for wave generation, application of artificial dampers 

at the exit part of the wave tank, and ultimately numerical smoothing of the resulting free surface by using interpolation 

through spline functions. At the end, effective parameters on the generated wave have been analyzed and the generated 

wave has also been validated against the result of the linear wave theory. 
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1 Introduction 

Wave loads are generally the most important forces acting on marine structures including and not limited to ships, 

platform and wave-breakers. As a result, in order to design the aforementioned structures, loads exerting from waves 

should be taken into consideration. In the meantime, performing real tests and sea trials would be expensive, risky and 

in some instances, impossible. This has led research studies toward the design and manufacturing of wave flumes in 

order to generate desirable waves in laboratories [1, 2]. Nevertheless, wave generation laboratories are relatively 

expensive and involve further complications. Therefore in the recent years, more attention has been given to the 

development of numerical methods of wave generation. 

In this regard, a multitude of studies have been done for the development of numerical wave tanks (NWT). A numerical 

wave tank is a generation of numerical simulators which is used for the numerical modeling of nonlinear free-surface 

waves, hydrodynamics forces and ship motions. In the past two decades, extensive efforts have been made for 

development of numerical and theoretical techniques. Longuet-Higgins and Cokelet [3] were among the first who 

suggested the use of numerical wave tank. They used the mixed Eulerian-Lagrangian (MEL) method in which the 

equations are first solved in the Eulerian framework in order to calculate fluid velocity field. This velocity field is then 

used for tracking the movements of particles in the Lagrangian framework. Development of the MEL method will lead 

to the possibility of nonlinear free-surface movements in particular time fractions. Following this, Dommermuth et al. 

[4] presented a 2-dimensional numerical wave tank for the complex potentials, while Xu and Yue [5] developed a 3D 

numerical wave tank for the first time and were able to simulate wave overturning phenomenon. 

In the framework of these studies, works of Grilli et al. [6] are of high importance. They studied the overturning of 

waves using their 3-dimensional numerical wave tank which was able to model different seabed geometries. Zhang et al. 

[7] were able to develop a suitable numerical wave tank in order to calculate plunging wave impact on vertical walls. 

Also in this field, Boo and Kim [8] studied the nonlinear wave diffraction forces acting on the vertical cylinders while 

Ferrant [9] overviewed the nonlinear forces on cylinders in general using an effective wave and current simulator. 

In addition to the works of Longuet-Higgins and Cokelet [3], Vinje and Brevig [10] performed substantial studies in the 

field of numerical wave tank development. They introduced acceleration field for the first time and showed how the 

pressure field can be calculated with the least oscillations. Therefore, they were successful in achieving a transient 

simulation of floating objects in waves. Also in this regard, works of Cointe et al. [11] were among the first in which the 

acceleration field method was being used. However, the acceleration field method was developed in three different 

forms. First of all, Tanizawa [12, 13] added the implicit boundary conditions to the acceleration field formulations. 
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Later on, Berkvens [14] developed the proposed method to consider three dimensionality effect, and in the past decade, 

Ikeno [15] and Shirakura et al. [16] implemented the implicit boundary conditions on the 3D numerical wave tank. 

Following these studies, numerical and theoretical techniques of numerical wave tanks were developed significantly. In 

the recent years, using numerical wave generators, various offshore and marine problems have been studied and solved. 

In the analysis of these problems, different numerical details such as implementation of various wave generators, wave 

dampers, free-surface smoothing strategies among others can be taken into account.  

In the present paper, generation and damping of waves using boundary element method (BEM) are studied. 

Accordingly, a 2-dimensional numerical wave flume is developed using fully nonlinear free-surface boundary 

conditions. The numerical wave flume is developed using potential theory with Mixed Eulerian-Lagrangian (MEL) 

method for time marching and boundary element method with constant elements. The Fourth Order Runge-Kutta (RK4) 

method is used for temporal integrals while 5-points Chebyshev and spline smoothing methods are used for the 

numerical smoothing of the resulting free-surface. 

In addition to this, artificial dampers are used at the exit part of the wave tank in order to avoid wave reflections into the 

computational domain. The specifications of the wave dampers and their effective length are chosen in a way that will 

lead to the least reflection of wave and wave energy. Therefore, particular terms are added to the kinematic and 

dynamic free-surface boundary conditions. Furthermore, the effects of different parameters such as time step, free-

surface element length, wave damper efficiency, wave damper effective length and the required number of intervals for 

the smoothing of the free-surface are studied. 

In the sections to come, definition of the problem, the governing equations and the details of the boundary element 

method are presented. The numerical methods that are used for the accurate simulations are studied and the 2-

dimensional numerical wave tank is validated. Finally, parametric studies on the effect of different variables on the 

generated wave are discussed and conclusions are drawn. 

 

2 Problem setup and mathematical formulations 

Numerical wave tank is consisted for four different surrounding boundaries as depicted in Fig.1. A 2-D wave is 

generated using a suitable input boundary condition imposed on the left boundary. Also, an artificial damping zone is 

placed at the right side of the computational domain in order to cancel out the waves approaching the far-right wall. The 

bottom boundary is set to be the seabed with wall conditions and the free surface boundary is applied at the top of the 

domain. Assuming the fluid to be incompressible, inviscid and irrotational, the governing equation would be the 

Laplace equation of the potential function as follows: 
2 0   (1) 

The Cartesian coordinate system is chosen in a way that the z-axis is stretched vertically from the mean free surface 

level and the x-axis is stretched downstream-wise. 

 

 
Fig.1: Schematic of the 2D wave tank. 

 

3 Boundary conditions 

Based on the presented computational domain in the previous section, different boundaries require careful 

implementation of boundary conditions. In the present section, boundary conditions for the 2-D numerical wave tank 

are discussed in depth. 
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3.1   Free surface boundary condition 
 

Both kinematic and dynamic boundary conditions (KFSBC and DFSBC, respectively) should be satisfied at the free-

surface boundary. The fully nonlinear dynamic free surface boundary condition is as follows: 
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Also, the fully nonlinear kinematic free surface boundary condition is presented below: 
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3.2   Inlet boundary condition 
 

The exact velocity profile of the initial wave is not presented in nonlinear terms. Therefore, the best remedy is to use 

theoretical wave as the inlet boundary condition. Since the free surface boundary conditions in the computational 

domain are introduced in terms of nonlinear parameters, the inlet wave would quickly conform to the desired wave 

shape. Boundary conditions for the linear inlet wave are as follows: 
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(4) 

in which the parameters A,  , k and h represent wave amplitude, wave frequency, wave number and water depth, 

respectively. 

 

3.3   Wall boundary condition 
 

In order to satisfy the impermeable characteristic of the wall boundary, the normal gradient of potential function should 

vanish at this boundary as in equation (5). This boundary condition is imposed on the top and right boundaries of the 

domain. 
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3.4   Artificial damping zone 
 

At the right side of the wave tank, an artificial damping zone is imposed in order to attenuate the wave energy. In this 

way, the waves that are approaching the far-right wall boundary will be gradually canceled out. The wave damper types 

and their effective lengths are chosen in a way that the reflected wave from the damping zone and the wave energy will 

be minimized. In this regard, required terms are added to both kinematic and dynamic free surface boundary conditions 

as follows: 
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(6) 

in which ( x )  is the adjustable attenuation coefficient inside the artificial damping zone. This coefficient is suggested 

to be a function of the position (x), wave length and wave frequency in most of the research studies. In the present paper, 

a second-order function of the position (x) is described for the damping coefficient as in 
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(7) 

in which 0x  is the longitudinal position at which the damping zone will start to interact while  is the damping factor. 

It has been found that by setting the damping zone length to one full wave-length and assuming the damping factor to 

be 1  , the wave reflection of the damping zone would be less than 2% [17, 18]. 
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4 Boundary element method and boundary value problem (BVP) solution 

The transient velocity potential and the respective free surface profile is calculated using equation (8) based on the 

discretized form of the integral equation 
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in which G is the Green function that will satisfy the Laplace equation and   is related to the position of the grid nodes. 

In 2-dimensional problems, the Green function, G, is defined as follows [19]: 
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in which 1R is the distance between source and each of the boundary nodes. 

The integral function is solved using the numerical 4-points Gaussian method and the discretized form of the integral 

equation is presented as follows [19]: 
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The general form of the above equation is presented below: 
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For the problem at hand, after applying the boundary conditions of the potential function in forms of Dirichlet 

(known ) or Neumann (known n ), the system of equations would be as follows: 

HX GF  (12) 

Matrix H includes all the known and unknown values of   while G includes all the known and unknown values of n . 

This system of equations would then be ordered in a way that all the known values will be taken to the right hand side 

of the equation with the unknown values stayed at the left hand side. This system of equations is then solved using the 

numerical algebraic methods of solution. 
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5 Numerical methods 

 

In order to solve the transient boundary value problem, different numerical techniques are used. Selected numerical 

methods and techniques are presented and discussed in this section.  

 

5.1   Mixed Eulerian-Lagrangian (MEL) method 
 

The MEL method is used for the simulation of the free surface elevation using the distributed nodes on the boundaries. 

The implementation of the fully nonlinear solution for the free surface profile using the MEL method was first used by 

Longuet-Higgins and Cokelet [3]. The time marching method in each time step is described as follows (Fig.2): 

1- Laplace equation solution in Eulerian form 

2- Modification of the moving boundary nodes and respective values in Lagrangian form 
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Fig.2: Mixed Eulerian-Lagrangian (MEL) Method. 

 

With the definition of total derivative as in 
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the nonlinear free surface boundary conditions in Lagrangian form would be as follows: 
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(15) 

Here,   and   are the nodes velocity and the free surface elevation, respectively. 

 

5.2   Semi-Lagrangian method 
 

When the grid nodes represent the movement, the method would be called as semi-lagrangian. In this method, the 

general approach is to consider the movement of the nodes only in vertical direction and the horizontal movements of 

the fluid nodes are neglected. Therefore, the velocity vector of the fluid node would be as follows: 

  0, / t    (16) 

Consequently, the free surface boundary condition is presented in equation (17). 
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(17) 

The semi-lagrangian method would complicate the free surface boundary conditions, while on the other hand, the 

computational grid would not require any modification or refinement process. In the developed numerical wave tank 

that is presented in the current study, both methods of MEL and semi-Lagrangian are used.  

 

5.3   Computational grid modification process 
 

When the new free surface is set in each time step, nodes can get so close to or so far from each other which will lead 

into numerical instabilities. Therefore, for avoiding this instability, the free surface and the computational grid should 

be reconstructed in a modification process. For the interpolation of the new free surface nodes, the square strips 

approximation method is used. The reconstruction or modification of the computational grid is performed in three 

stages. In the first stage, the spline approximation of the free surface profile is calculated using the element linear length 

as a parameter of interest. In the second stage, the arc length of the free surface profile is determined and the spline 

approximation is formulated using the calculated arc length. Finally, the nodes on the free surface profile would be 

relocated based on the representation of the boundary using elements with equal length. However, the element lengths 

can be considered gradually increasing using a growth rate [20]. 

 

5.4   Ramp function 
 

The ramp function is used for wave modeling on the inlet boundary. This function will prevent the abrupt behavior of 

the wave maker which will result in more stability of the generated waves inside the computational domain. Therefore, 

using the ramp function at the inlet boundary will lead to a more stable solution. This function is imposed on a time 

range that is a factor of the wave period. In the present study, this time range is set to be 2 wave periods. 
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(18) 

5.5   Time step restriction 
 

In numerical simulations, distance between the intermediate nodes (i.e. x ) and the time step ( t ) should be chosen in 

such a way to avoid numerical instabilities. Dommermuth and Yue [21] studied the Von-Neumann stability analysis for 

the application of the fourth order Runge-Kutta (RK4) method to linearize free surface conditions and presented the 

courant criterion as follows: 

2 8 x
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(19) 

As stated by Kim et al. [22], equation (19) is expected to be also valid for nonlinear free surface conditions. This 

equation gives the maximum allowable time step size ( t ) based on the element size ( x ) but does not necessarily 

restrict this value. 

 

5.6   Time marching method 

 

In the framework of the Mixed Eulerian-Lagrangian (MEL) method, velocity potentials on the free surface and the 

normal derivative of the potential field on the boundaries are known. The velocity potential and the free surface 

elevation will be calculated using the temporal integration of the free surface boundary conditions based on the time 

step size ( t ). This process is known as the time marching procedure. In this regard and in the present study, the fourth 

order Runge-Kutta (RK4) method, as one of the most stable methods for nonlinear conditions in simulation, is used. 

 

5.7   Free surface smoothing 
 

The free surface smoothing procedure is performed at each time step. The numerical instabilities can be overcome using 

this technique. In the time marching process, sawtooth instabilities appeare on the free surface profile. One reason for 

this behavior is due to the nature of the numerical integrals which were solved using numerical methods. Another 

reason would be the physical nature of the problem at hand. 

Sawtooth instabilities can be avoided using smoothing techniques. In the present numerical wave tank, two methods of 

5-points chebyshev [24] and 5-points third-order spline [25] methods are used for the temporal integration on the free 

surface. 

 

6 Effect of different parameters on the simulations of numerical wave tank 

As discussed in the previous sections, different numerical methods and techniques are required for accurate simulation 

of this problem. Implementing each of these methods would cause particular difficulties for the generation of waves. 

Therefore, the stability of the temporal integrals and the accuracy of the obtained results would be largely affected by 

the time step size ( t ) and some other leading factors. In general, the accuracy of the generated wave and its 

compatibility with theoretical results would require a suitable combination of the following parameters: 

1- Time Step Size 

2- Free Surface Element Size 

3- Wave Damping Factor 

4- Wave Damper Effective Length 

5- Number of Smoothing Intervals 

In the present study, in order to validate the developed 2-dimensional numerical wave tank, the effects of the above 

mentioned parameters are studied in details. Finally a suitable value for each of these parameters can be determined. In 

these simulations, a computational domain of 6 meters long is used and the wave specifications are as follows: 

a) the water depth and the wave length are both 1 meter,  

b) wave amplitude is 0.02 m and the wave period is set to be 0.8005 seconds.  

c) the simulations are performed for 18 seconds and  

d) based on the wave length and the water depth in the framework of the wave theory, the wave tank can be 

considered as deep water: 
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6.1   Effect of time step 
 

Using different time step sizes while maintaining the number of free surface nodes at a constant value will result in 

contrasting behaviors of the generated wave as shown on Fig.3. The simulations are done for two different time step 

sizes with the total duration of 18 seconds. It is shown that the time step will affect the computational results and the 

solver is highly dependent on the time step size. 
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Fig.3. The effect of the time step size on the generated wave profile 

 

6.2   Effect of free surface element size 
 

In order to study the effects of a fine free surface grid sizing, the number of free surface elements has been varied while 

keeping the time step size as a constant value. The results for two different element sizes are shown on Fig.4. In this 

figure, 1n  is the number of free surface nodes. It is clear that the numerical solution is largely affected by the number of 

these elements and therefore extra care should be given to the determination of this value. 
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Fig.4: The effect of the free surface element size on the generated wave profile 

 

6.3   Effect of wave damping factor 
 

As stated in section 3 and explained in details in subsection 3.4, wave damper or the artificial numerical damping zone 

has two main parameters. Damping factor  is one of these parameters which is shown to be largely affecting the 

numerical solution, as shown in Fig.5. 
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Fig.5: The effect of the wave damping factor on the generated wave profile 

 

6.4   Effect of wave damper effective length 
 

Another parameter which plays a significant role in the damping behavior of the artificial number damping zone is the 

damper effective length. It is shown in Fig.6 that this parameter will affect the obtained numerical solution and a longer 

damping zone will be able to cancel out the approaching waves, more effectively. 
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Fig.6: The effect of the wave damper effective length on the generated wave profile 

 

6.5   Effect of number of smoothing intervals 
 

Number of the smoothing intervals is a parameter that shows the intervals in which the smoothing process will happen. 

In order to study the effects of this parameter on the numerical solution, two different intervals are chosen. First, the 

smoothing process is performed at each time step and in another simulation this process is performed in every two time 

steps. The results which are depicted in Fig.7 show that with quicker smoothing, wave will not be generated effectively 

and with small number of smoothing intervals, the numerical solver will be unstable. 
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Fig.7: The effect of the number of the smoothing intervals on the generated wave profile 
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6.6   Effect of ramp function time range 
 

As presented in the previous sections, a ramp function is used for the wave generator boundary condition which will 

prevent the abrupt motions of the generator. The time range for imposing this function is changed in order to study its 

effect on the stability and consistency of the numerical solver. In Fig.8, the time range mT shows how long the ramp 

function will be gradually imposed on the boundary until it reaches a constant value. Decrease in the time range mT will 

change the ramp function behavior until the time 0mT  at which, it will act like a step function. It is shown that an 

abrupt motion of the wave maker can lead to an unstable generated wave profile and with larger time ranges, mT , wave 

will be generated later but with less inconsistency and more stability. 
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Fig.8: The effect of the ramp function time range on the generated wave profile 

 

Based on an extensive parametric study that was performed on these parameters that would largely affect the numerical 

solution, a suitable combination and ideal determination of these values have been obtained. Based on the wave tank 

and the wave profile specifications, the following parameters are suggested: 

1- Time step size: 0 0175t . (sec)   

2- Number of free surface nodes: 1 130n   

3- Number of nodes on the end wall of the wave tank: 2 30n   

4- Number of nodes on the wave maker or the inlet boundary: 3 50n   

5- Number of nodes on the wave tank bottom: 4 100n   

6- Number of smoothing intervals: every two time steps ( 2Smoothing t  ) 

7- Time range for the ramp function: 2mT T   

8- Artificial Damping Zone: 2dL  , 1 0.   

In the following section, validation of the 2D generated wave is performed against the theoretical results. 

 

7 Validation of the numerical wave tank 

In this section, the generated regular wave inside the numerical wave tank is validated using the theoretical wave profile. 

As shown in Fig.9, the generated wave inside the tank appears after about 8 seconds and at around 12 0t . (sec) . 

Numerical and analytical results are in good agreement which verifies the numerical stability and accuracy of the 

developed BEM solver. Results are probed at a location of 3 0x . ( m ) from the origin. It is worth mentioning that, 

with the present specifications of the wave profile and the tank, the generated wave will meet the physical conditions 

after 12 seconds. The obtained results prove the accuracy of the numerical solver in generating regular waves inside the 

tank. Also, the propagation of the generated wave inside the tank at two different time durations are shown in Fig.10 

which also vouch for the efficiency of the present solver in maintaining its accuracy over the simulations. 
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Fig.9. Comparison of the generated numerical wave with the theoretical profile for the probing location at 3 0x . ( m ) . 

 

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 1 2 3 4 5 6

El
ev

at
io

n 
(m

)

X-Dimension (m)

t=18 sec

t=20 sec

 
Fig.10: Propagation of the generated wave inside the numerical wave tank over time 

 

8 Conclusion 

In the present study, a 2-dimensional numerical wave tank is developed. With the assumption of an inviscid, irrotational 

and incompressible fluid, the Laplace equation of the potential function is the governing equation of the solver. Using a 

suitable inlet boundary condition as the wave maker of the tank and with nonlinear free surface boundary conditions, 

the generation of waves is studied. Also, an artificial damping zone is placed at the exit part of the tank in order to 

cancel out the generated waves which approach the far-right wall boundary of the computational domain. This damping 

zone will prevent the generated wave from being reflected back into the domain. The boundary element method (BEM) 

with constant sized elements is used for numerical solution of the governing equation. Additionally, the fourth order 

Runge-Kutta (RK4) method is used for the transient solution of the equations and for performing temporal integrations. 

The effects of different parameters on the consistency and accuracy of the developed solver are studied. In this regard, 

with an initial node seeding with a constant element size, increase of the time step causes the wave amplitude to 

increase and the amplitude will get even higher as the generated wave propagate toward the end of the tank. Also, same 

results can be achieved by increasing the number of free surface nodes or decreasing the element size. It has been 

observed that the obtained numerical results are largely affected by the number of free surface nodes and it can also be 

altered with changes in number of nodes on the inlet boundary (wave maker) while the number of nodes on the bottom 

and exit boundaries are not important for the accuracy of the numerical solutions. In the framework of an extensive 

study on the effects of the different parameters, the number of smoothing intervals plays a significant role on the 

efficiency and accuracy of the obtained results. It is shown that when the smoothing process is performed at longer 

intervals, wave would not be generated and when it happens more quickly, the solution would get unstable. 

Finally, the developed numerical wave tank is validated against the theoretical results. Comparison shows that the BEM 

solver which is developed and presented in the current study is in good agreement with the theoretical wave profiles and 

therefore the numerical wave tank exhibits good consistency and accuracy for the generation and propagation of 2-

dimensional regular waves. 
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