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Abstract

It is proved that a class of nonlinear integral equations of the Volterra-Hammerstein type has a global solution, that is, solutions defined for
all t ≥ 0, and estimates of these solutions as t → ∞ are obtained. The argument uses a nonlinear differential inequality which was proved by
the author and has broad applications.
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1. Introduction

Consider the equation:

u(t)=
∫ t

0
e−a(t−s)h(u(s))ds+ f (t) :=T (u), t ≥ 0; a= const > 0.

(1)

that is, Volterra-Hammerstein equation. There is a large literature
on nonlinear integral equations,[1], [6]. The usual methods to study
such equations include fixed-point theorems such as contraction
mapping principle and degree theory, (Schauder and Leray-Schauder
theorems). The goal of this paper is to give a new approach to a
study of equation (1). We give sufficient conditions for the global
existence of solutions to (1) and their estimates as t → ∞.
Denote f ′ := d f

dt . By c > 0 various constants will be denoted.
Let us formulate our assumptions:

|h(u)| ≤ c|u|b, |h′(u)| ≤ c|u|b−1, b ≥ 2, (2)

| f (t)|+a| f ′(t)| ≤ ce−a1t , a1 = const > 0. (3)

Our approach is based on the author’s results on the nonlinear dif-
ferential inequality formulated in Theorem 1 (see [2]–[5]). These
results have been used by the author in a study of stability of solu-
tions to abstract nonlinear evolution problems ([5]).
Denote R+ = [0,∞).
Theorem 1. Let g ≥ 0 solve the inequality

g′(t)≤−ag(t)+α(t,g)+β (t), t ≥ 0, a = const > 0, (4)

where α(t,g)≥ 0 and β (t)≥ 0 are continuous functions of t, t ∈R+

and α(t,g) is locally Lipschitz with respect to g. If there exists a
function µ(t)> 0, defined on R+, µ ∈C1(R+), such that

α(t,
1

µ(t)
)+β (t)≤ 1

µ(t)

(
a− µ ′(t)

µ(t)

)
, ∀t ≥ 0, (5)

and

g(0)µ(0)≤ 1, (6)

then g exists on R+ and

0 ≤ g(t)≤ 1
µ(t)

, ∀t ≥ 0. (7)

A proof of Theorem 1 can be found in [5]. Its idea is described in
Section 2.
The result of this paper is formulated in Theorem 2.
Theorem 2. Assume that (2) and (3) hold, a≥ 2, b≥ 2, c∈ (0,0.75),
p ∈ (0,min(0.75a,a1)), R = (b− 1)1/b. Then any solution to (1)
exists on R+ and satisfies the estimate

|u(t)| ≤ R−1e−pt , ∀t ≥ 0, p ∈ (0,min(0.25a1,a)). (8)

In Section 2 Theorem 2 is proved.

2. Proof of Theorem 2

Let us reduce equation (1) to the form suitable for an application of
Theorem 1. Differentiate (1) and get

u′ = f ′−a
∫ t

0
e−a(t−s)h(u(s))ds+h(u(t)). (9)

Let g(t) := |u(t)| and take into account that |F(t)| ≤ cea1t , F :=
f ′+a f .
From (1) one gets

∫ t
0 e−a(t−s)h(u(s))ds = u− f . This and equation

(9) imply

u′ = f ′−a(u− f )+h(u(t)). (10)

Therefore, one gets

u′ =−au+h(u)+F, F := f ′+a f . (11)
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Multiply (11) by u, where u stands for complex conjugate of u, and
get

u′u =−ag2 +h(u)u+Fu. (12)

One has

u′u+u(u)′ =
dg2

dt
= 2gg′. (13)

We define the derivative as g′ = limh→+0
g(t+h)−g(t)

h . With this
definition, g(t) is differentiable at every point if u(t) is continuously
differentiable for all t ≥ 0. Any solution u(t) to (1) is continuously
differentiable under our assumptions. Take complex conjugate of
(12), add the resulting equation to (12) and take into account (13).
This yields

2gg′ =−2ag2 +2Re(h(u)u)+2Re(Fu). (14)

Since g ≥ 0, one derives from (14), using assumptions (2) and (3),
that

g′(t)≤−ag(t)+ cgb + ce−a1t . (15)

Let

µ(t) = Rept , R = const > 0, p ∈ (0,min(0.25a,a1)). (16)

Condition (5) can be written as

c
Rbebpt + ce−a1t ≤ 1

Rept (a− p), t ∈ R+. (17)

This inequality holds if

c
Rb−1e(b−1)pt

+ cRe−(a1−p)t ≤ 3a
4
, t ∈ R+. (18)

Inequality (18) holds if b ≥ 1 and

1
Rb−1 +R ≤ 3a

4c
. (19)

The minimum of the left side of (19) is attained at R = (b− 1)1/b

and is equal to b
(b−1)(b−1)/b . Thus, (19) holds if

b
(b−1)(b−1)/b

≤ 3a
4c

. (20)

For example, assume that

a ≥ 2, c ≤ 0.75.

Then (20) holds if b ≤ 2(b−1)(b−1)/b, that is, if

bb ≤ 2b(b−1)b−1. (21)

Inequality (21) holds if b ≥ 2. Thus, by Theorem1, any solution u(t)
of (1) exists globally and

|u(t)| ≤ e−pt

R
, (22)

provided that

|u(0)|R ≤ 1, R = (b−1)1/b, a ≥ 2, b ≥ 2, c = 0.75,

p ∈ (0,min(0.25a,a1)).
(23)

Inequality |u(0)|R ≤ 1 holds if | f (0)|R ≤ 1. By assumption (3) this
inequality holds if c ≤ 1

R . Theorem 2 is proved. �
Let us prove existence of a solution to (1) using the contraction
mapping principle and Theorem 2.
By estimate (22) one has |u(t)| ≤ 1

R for all t ≥ 0. Therefore, using
assumptions (2) and (3), one gets

|Tu| ≤ c+
c

aRb ≤ 1
R
, (24)

provided that cR ≤ 1
1+ 1

aRb
. For R = (b−1)1/b this inequality holds

if c is sufficiently small. If (24) holds, then T maps the ball BR :=
{u : ||u|| ≤ 1

R} into itself. Here ||u||= maxt≥0|u(t)|.
On the ball BR the operator T is a contraction:

||Tu−T v|| ≤ ||
∫ t

0
e−a(t−s)c|ηb−1|ds||||u− v|| ≤ c

Rb−1a
||u− v||,

(25)

where the assumption (2) was used, and η is the ”middle” element
between u and v, ||η || ≤ 1

R . The integral in (25) is estimated as
follows:

||
∫ t

0
e−a(t−s)c|ηb−1|ds|| ≤ c

Rb−1 maxt≥0

∫ t

0
e−a(t−s)ds ≤ c

Rb−1a
.

(26)

If
c

Rb−1a
< 1, (27)

then T is a contraction on BR. Condition (27) holds if c is sufficiently
small. Thus, if condition (27) and the assumptions of Theorem 2
hold, then, by the contraction mapping principle, there exists a
unique solution to (1) in the ball BR. �
For convenience of the reader we sketch the idea of the proof of
Theorem 1 following [2]—[5].
Inequality (5) can be written for the function w = 1

µ
as follows:

−aw+α(t,w)+β (t)≤ w′. (28)

From (4) and (28) by a comparison lemma for ordinary differential
equations it follows that

0 ≤ g(t)≤ 1
µ(t)

, (29)

provided that g(0)≤ w(0) = 1
µ(0) . The last inequality is the assump-

tion (6). Since µ(t)> 0 and is assumed to be defined for all t ≥ 0,
the function w = 1

µ
is defined for all t ≥ 0. Since 0 ≤ g(t) ≤ 1

µ(t) ,
and g(t) := |u(t)|, the function u is defined for all t ≥ 0.
If limt→∞ µ(t) = ∞, then limt→∞ |u(t)|= 0 by estimate (29).
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