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Abstract

Let f ∈ L1
loc(Rn) ∩ S ′, where S ′ is the Schwartz class of distributions. Assume that

∫

σ(D)

f(x)dx = 0 ∀σ ∈ G, (∗)

where D ⊂ Rn, n ≥ 2, is a bounded domain, the closure D̄ of which is C1−diffeomorphic to a closed ball. Then
the complement of D̄ is connected and path connected. Here G denotes the group of all rigid motions in Rn. This
group consists of all translations and rotations.

It is conjectured that if f 6= 0 and (∗) holds, then D is a ball. Other conjectures, equivalent to the above one,
are formulated and discussed. Several new short proofs are given for various results. A new idea concerning the
possible approach to the Pompeiu problem is formulated. The presentation is self-contained.
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1 Introduction

In this paper the problem known as the Pompeiu problem is formulated and discussed. This problem originated in
Pompeiu’s paper [9], of 1929. The problem in a modern formulation is stated below as Conjecture 1, and is still
open.

Dimitrie Pompeiu (1873-1954) was born in Romania and got his Ph.D in 1905 at the Sorbonne, in Paris, under
the direction of H. Poincaré. He is known mainly for the Pompeiu problem and for the Cauchy-Pompeiu formula
in complex analysis.

Let us formulate the Pompeiu problem as it is understood today.
Let f ∈ L1

loc(Rn) ∩ S ′, where S ′ is the Schwartz class of distributions, and
∫

σ(D)

f(x)dx = 0 ∀σ ∈ G, (1)

where G is the group of all rigid motions of Rn, consisting of all translations and rotations, and D ⊂ Rn is a bounded
domain, the closure D̄ of which is C1−diffeomorphic to a closed ball. Under these assumptions the complement of
D̄ in Rn, n ≥ 2, is connected and path connected by the isotopy extension theorem, see [6].

The distribution space S ′ in the assumption f ∈ L1
loc(Rn)∩ S ′ can be replaced without essential changes in the

argument by the distribution space D′, where D is the space of C∞0 (R3) functions.
In [9] the following question was raised:
Does (1) imply that f = 0?
If yes, then we say that D has P -property (Pompeiu’s property), and write D ∈ P . Otherwise, we say that D

fails to have P -property, and write D ∈ P . Pompeiu claimed in 1929 (see [9]) that every plane bounded domain has
P -property. This claim turned out to be false: a counterexample was given 15 years later in [3]. The counterexample
is a domain D which is a disc, or a ball in Rn for n > 2. If D is a ball, then there are f 6= 0 for which equation
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(1) holds. The set of all f 6= 0, for which equation (1) holds, was constructed in [10]. There are infinitely many (a
continuum) such f . Let us give the counterexample mentioned above.

Example 1. Suppose that D ⊂ Rn is a ball B centered at the origin and of radius a. Then the Fourier transform
of its characteristic function χ is (see, for instance, [12], Chapter 11):

χ̃(ξ) =
∫

B

eiξ·xdx = (2πa)n/2 Jn/2(a|ξ|)
|ξ|n/2

, (2)

where Jn/2 is the Bessel function. It follows that if |ξ| = sj,n/a, where sj,n is any positive zero of the Bessel function
Jn/2(s), then χ̃(ξ) has a spherical set of zeros. This implies, as follows from Theorem 3, proved below, that there
are f 6= 0 for which relation (1) holds.

A bibliography on the Pompeiu problem (P -problem) can be found in [17] and in [10].
The current formulation of the P -problem is the following:
P -problem. Prove that if D ⊂ Rn is a bounded domain C1−diffeomorphic to a ball and D ∈ P , then D is a

ball.
We use the word ball also in the case n = 2, when this word means disc, and discuss the P -problem in detail.

This problem leads to some problems of general mathematical interest: a symmetry problem for partial differential
equations, see Conjecture 2 below, and a problem in harmonic analysis, see Conjecture 3 below.

Let us make the following standing assumptions, that hold throughout this paper:
Assumptions A:
A1) : D is a bounded domain, the closure of which is C1−diffeomorphic to a closed ball, the boundary S of D is

a closed connected C1-smooth surface,
A2) : D fails to have P -property.
Our first conjecture is:
Conjecture 1. If Assumptions A hold, then D is a ball.
In Section 2 this Conjecture is discussed. We prove that Conjecture 1 is equivalent to a symmetry problem

for an over-determined boundary value problem for a partial differential equation. Namely, it is equivalent to the
following conjecture.

Conjecture 2. If problem (3) (see below) has a solution, then D is a ball.
Several symmetry problems were studied by the method similar to the one used in the proof of Theorem 1,

below, see also [13]-[15].
Conjectures 1 and 2 are equivalent to the following conjecture:
Conjecture 3. If Assumption A1 holds and the Fourier transform χ̃D of the characteristic function χD of the

domain D has a spherical surface of zeros, then D is a ball.
Conjecture 3 can be generalized: the author thinks that if the Fourier transform χ̃D of the characteristic function

χD of the domain D is spherically symmetric, that is, it is a function of |ξ| only, then D is a ball.
Three other conjectures are formulated in Sections 2 and 4.
The novel points in this paper include a proof of equivalence of Conjectures 1, 2 and 3, proofs of Theorems 1,

2, 3, and Lemmas 1-5, and formulation of Conjecture 6.

2 Discussion of the Conjectures

It is proved in [16] that if Assumptions A hold, then the boundary S of D is real-analytic. It is proved in Theorem
3 below, that if Assumptions A hold, then the problem

(∇2 + k2)u = 1 in D, u
∣∣
S

= 0, uN

∣∣
S

= 0, k2 = const > 0, (3)

has a solution. In (3) N = Ns is the outer unit normal to S pointing out of D, s ∈ S is a point on S.
Therefore, if (1) holds, then problem (3) has a solution.
Let us prove that if problem (3) has a solution, then χ̃D has a spherical set of zeros, where χD is the characteristic

function of the domain D. To prove this, let us multiply (3) by eikα·x, where α ∈ Sn−1 is an arbitrary unit vector
and Sn−1 is the unit sphere in Rn, and integrate with respect to x over D. Using an integration by parts and the
boundary conditions (3) for u, one gets the desired relation:

χ̃D(kα) = 0 ∀α ∈ Sn−1. (4)
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Thus, χ̃D has a spherical set of zeros.
Conjectures 1, 2, and 3 are equivalent in the sense that each of them claims that D is a ball. But these three

conjectures are also equivalent in the sense that if one of them is correct, then so are the remaining two.
Indeed, in the proof of Theorem 3 equation (3) was derived from equation (1), and the relation

χ̃D(ξ) = 0, |ξ| = const > 0, (5)

was derived from equation (3). From the proof of Theorem 3 it follows that equation (5) implies the equation

χ̃(ξ) = (ξ2 − k2)ũ(ξ), (6)

(see equation (23) below, in the proof of Theorem 3), and the inverse Fourier transform of (6) yields equation (3)
and the boundary conditions in (3). In this sense problem (3) is equivalent to relation (5), and Conjectures 2 and
3 are equivalent in the sense that if one of them is correct, so is the other one.

Furthermore, from the proof of Theorem 3 it follows that (5) implies (1). Indeed, equation (5) implies equation

f̃(ξ)χ̃(g−1ξ) = 0, (7)

(see equation (21) below), and the inverse Fourier transform of this equation yields relation (1).
In this sense relations (1), (3) and (5) are equivalent, and Conjectures 1, 2 and 3, are equivalent in the sense

that if one of them is correct, so are the other two.
Problem (3) is an open symmetry problem of long standing for partial differential equations. Let us formulate

another open symmetry problem for partial differential equations of long standing, known as M. Schiffer’s conjecture
(see, e.g., [4], [12]):

Conjecture 4. If the problem

(∇2 + k2)u = 0 in D, uN

∣∣
S

= const 6= 0, u
∣∣
S

= 0, k2 = const > 0, (8)

has a solution, then D is a ball.
Note that Conjecture 2 can be formulated in the form similar to (8):
Conjecture 5. If the problem

(∇2 + k2)u = 0 in D, uN

∣∣
S

= 0, u
∣∣
S

= const 6= 0, k2 = const > 0, (9)

has a solution, then D is a ball.
Lemma 0. Conjecture 5 is equivalent to Conjecture 2.
Proof. If (3) holds, then one can look for the solution u of the form u = v + c, where c is a constant. The

boundary conditions in (3) imply v = −c on S, and vN = 0 on S. Let us choose c = 1/k2. Then the differential
equation (3) implies

(∇2 + k2)v = 1− k2c = 0.

Therefore, v solves problem (9). Conversely, if v solves problem (9), then u = v + c solves (3) if c is a suitable
constant. 2

Conjecture 5 apparently is not equivalent to Conjecture 4, as follows from its formulation. These two conjectures
are independent and long-standing.

The results, on which our discussion of Conjectures 1, 2 and 3 is based, are Theorems 1, 2 and 3. Theorems
1 and 2 were proved originally in [11], [10], and in the book [12], Chapter 11. A result, equivalent to Theorem 3,
had been proved originally in the paper [2] by a considerably longer and more complicated argument. Our proof
follows the one in [12], Chapter 11. In the paper [8] the null-varieties of the Fourier transform of the characteristic
function of a bounded domain D are studied. The properties of these varieties and the geometrical properties of D
are related, of course, but it is not clear in what way they are related. Conjecture 3, if it is proved, is an interesting
example of such a relation.

In Section 3 a relation of the Pompeiu problem in R2 to analyticity of f is discussed. It is proved that if the
domain D ∈ P , f ∈ L1

loc(R2), and if
∫

∂σ(D)
fdz = 0 ∀σ ∈ G, then f is an entire function. An earlier discussion of

this result can be found in [18]. We give a new short proof of a result from [18].
In Section 4 a new approach to the Pompeiu problem is outlined and a new conjecture is formulated.
To make our presentation essentially self-contained, proofs of Theorems 1, 2 and 3, are included in this paper.
Theorem 1. If Assumptions A hold, then

[s, N ] = uN , ∀s ∈ S, (10)
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where [s,N ] is the cross product in R3, and u is a vector-function that solves the problem

(∇2 + k2)u = 0 in D, u|S = 0. (11)

If n = 2, then D is a plane domain, S is a curve C1−diffeomorphic to a circle, u is a scalar solution to equation
(11), and the boundary condition (10) yields s1N2 − s2N1 = uN , ∀s ∈ S, where Nj , j = 1, 2, are Cartesian
coordinates of the unit normal N to S pointing out of D. Indeed, if n = 2 then the cross product of two vectors
[s1e1+s2e2, N1e1+N2e2] is calculated by the formula [s,N ] = (s1N2−s2N1)e3, where e3 is a unit vector, orthogonal
to the plane domain D, and the triple {ej}3j=1 is a standard orthonormal basis in R3.

Let us state the following new characterization of spheres. Several other characterizations of spheres are known.
For example, if the mean curvature of a sufficiently smooth closed surface is a constant, then the surface is a sphere,
see [1].

Theorem 2. If S is a smooth surface homeomorphic to a sphere and [s,N ] = 0 on S, then S is a sphere.
The proof of Theorem 2 will be given in the coordinate system in which the condition [s,N ] = 0 on S is valid.
The following conclusion is an immediate consequence of Theorem 2:
The conclusion of Conjecture 1 will be established if one proves, under the Assumptions A, that [s,N ] = 0 on S.
Let us start by proving Theorem 2, then Theorem 1 is proved, and, finally, we prove Theorem 3. It is assumed

throughout, except in Section 3, that n = 3. Our proofs of Theorems 1 and 3 can be used for any integer n ≥ 2
without any essential changes. The proof of Theorem 2 uses the notion of the cross-product, and by this reason its
proof should be modified for n > 3.

Proof of Theorem 2. Let n = 3 and assume that s = s(p, q) is a parametric equation of the surface S. The
normal N to S is a vector directed along the vector [sp, sq], where sp denotes the partial derivative of the function
s(p, q) with respect to the parameter p. The assumption [s,N ] = 0 on S, yields

[s, [sp, sq]] = sps · sq − sqs · sp = 0, (12)

where s · sq is the dot product of two vectors in R3. At a non-singular point of S the vectors sp and sq are linearly
independent. The surface S is smooth, so its points are non-singular. Therefore equation (12) implies s · sq = 0 and
s · sp = 0, so

∂s · s
∂p

= 0,
∂s · s
∂q

= 0. (13)

Consequently,

s · s = const. (14)

This is an equation of a sphere in the coordinate system with the origin at the center of the sphere. Theorem 2 is
proved. 2

Proof of Theorem 1. Let n = 3 and N denote the set of all smooth solutions to equation (11) in a ball B,
containing D, but these solutions do not necessarily satisfy the boundary condition (11). Assume that problem (3)
has a solution. Multiply (3) by an arbitrary solution h to equation (11) in a ball B, containing D, integrate by
parts, take into account the boundary conditions in (3), and get the relation

∫

D

h(x)dx = 0 ∀h ∈ N .

The inclusion h ∈ N implies ∇h ∈ N , so
∫

D

∇h(x)dx = 0 ∀h ∈ N .

Since h ∈ N implies h(gx) ∈ N for all g, where g is an arbitrary rotation in R3 about the origin O, one obtains
∫

D

h(gx)dx = 0 ∀h ∈ N , ∀g. (15)

Let O ∈ D, and take an arbitrary straight line ` passing through O and directed along a unit vector α. Let g = g(φ)
be the rotation about ` by an angle φ counterclockwise. Differentiate (15) with respect to φ and then set φ = 0,
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see [11]. A similar argument has been used in [13]-[15], where various symmetry problems have been studied. The
result is

∫

D

∇h(x) · [α, x]dx = 0, (16)

where [α, x] is the cross product and · stands for the inner product in R3. Equation (16) is invariant with respect
to translations because

∫
D
∇h(x)dx = 0 ∀h ∈ N . Using the relation ∇ · [α, x] = 0, valid for any constant vector

α, one writes ∇h · [α, x] = ∇ · h[α, x], applies the divergence theorem and using the arbitrariness of α derives from
(16) the following relation

∫

S

h(s)[s,N ]ds = 0, ∀h ∈ N , (17)

which is also invariant with respect to translations. Indeed, N = [sp, sq] and [sp, sq] is invariant under translations.
The integral

∫
S

h(s)[α,N ]ds = 0 for any constant vector α. This relation is invariant under translations because∫
S

h(s)Nds =
∫

D
∇hdx = 0, as was pointed out above.

Let us derive from (17) equation (10). To do this, we need the following result.
Lemma 1.The orthogonal complement in L2(S) of the set M of the restrictions of all h ∈ N to S is a finite-

dimensional space spanned by the functions ujN , where {uj}J
j=1 is the basis of the eigenspace of the Dirichlet

Laplacian in D, corresponding to the eigenvalue k2.
Remark 1. From Lemmas 1 and 2 it follows that equation (17) implies equation (10). Indeed, it follows from

equation (17) that [s,N ] is orthogonal in L2(S) to the set M . By Lemma 2, the set M is dense in L2(S) in the set
of all functions f for which problem (18) is solvable. Therefore, by Lemma 1, each of the three components of the
vector [s,N ] must be linear combinations of the functions ujN , 1 ≤ j ≤ J . In other words, equation (10) holds.

Proof of Lemma 1. Note that the result of Lemma 1 is equivalent to the assertion that the boundary value
problem

(∇2 + k2)h = 0 in D, h|S = f (18)

is solvable if and only if
∫

S

fujNds = 0, 1 ≤ j ≤ J. (19)

where uj , 1 ≤ j ≤ J, is a basis of the solutions to problem (11).
The necessity of conditions (19) is proved by the relation

0 =
∫

D

uj(∇2 + k2)hdx = −
∫

S

fujNds,

where an integration by parts and the boundary condition uj = 0 on S were used, and equation (18) for h was
taken into account.

The sufficiency of conditions (19) is proved as follows. Denote by Hm(D) the usual Sobolev spaces. Given an
f ∈ H3/2(S), construct an arbitrary F ∈ H2(D), such that F |S = f |S . This is possible by the trace theorem.
Define w by the relation w = h− F . Then w solves the problem

(∇2 + k2)w = −(∇2 + k2)F in D, w|S = 0. (20)

If such w exists, that is, if problem (20) is solvable, then the function h = w + F solves problem (18), and the
sufficiency of condition (19) is proved. For the existence of w it is necessary and sufficient that

∫

D

(∇2 + k2)Fujdx = 0, 1 ≤ j ≤ J.

An integration by parts shows that these conditions are equivalent to conditions (19) because uj solve problem (11).
Thus, Lemma 1 is proved. 2

Equation (17) says that [s,N ] is orthogonal to the set M , that is, to the restrictions of all h ∈ N to S.
Lemma 2. The set M is dense in L2(S) in the set of all f ∈ H3/2(S) for which problem (18) is solvable.
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Proof of Lemma 2. Assume the contrary. Then for some f ∈ H3/2(S), f 6= 0, problem (18) is solvable and

η(y) :=
∫

S

f(s)ψ(s, y)ds = 0 ∀y ∈ D′ := R3 \D,

where ψ(x, y) := eik|x−y|
4π|x−y| ∈ N for y ∈ B′, that is, outside a ball containing D. The function η is a simple-layer

potential which vanishes in B′. Therefore, by the unique continuation property for solutions of the homogeneous
Helmholtz equation, η = 0 everywhere in D′. Thus, it vanishes on S. Therefore, η solves problem (11). By the
jump relation for the normal derivative of η across S, one has f = ηN , where ηN is the limiting value of the normal
derivative of η on S from inside D. If problem (18) is solvable, then, as we have proved, f is orthogonal to all
functions ujN . The function ηN is a linear combination of these functions. This and the relation f = ηN prove that
f = 0. Consequently, we have proved the claimed density of M in the set of all H3/2(S)−functions f for which
problem (18) is solvable. Lemma 2 is proved. 2

This completes the proof of Theorem 2. 2

Theorem 3. Suppose Assumptions A hold and relation (1) holds for some f 6= 0. Then problem (3) has a
solution. Conversely, if problem (3) has a solution, then there exists f 6= 0 such that relation (1) holds.

Proof of Theorem 3. Write (1) as
∫

R3
f(gx + y)χ(x)dx = 0 ∀y ∈ R3, ∀g ∈ G,

where χ(x) is the characteristic function of D. Applying the Fourier transform and the convolution theorem one
gets

f̃(ξ)χ̃(g−1ξ) = 0, (21)

where f̃ and χ̃ are the Fourier transforms of f and χ, respectively, and the overbar stands for the complex conjugate.
The Fourier transform of f is understood in the sense of distributions. The Fourier transform χ̃ is an entire function
of exponential type because function χ has support D, which is a bounded set. Moreover, χ̃ is a uniformly bounded
function of ξ ∈ Rn. The product of the tempered distribution f̃ and the function χ̃ is a tempered distribution also,
that is, and element of S ′.

Since g−1 runs through all the rotations, one can replace g−1 by g. It follows from (21) that

supp f̃ = ∪kCk, where Ck := {ξ : χ̃(ξ) = 0 ∀ξ : ξ2 − k2 = 0}. (22)

In other words, the support of the distribution f̃ is a subset of the union of spherical surfaces of zeros of χ̃, the
Fourier transform of the characteristic function of the bounded domain D. Since χ̃(ξ) is an entire function of
exponential type, vanishing on an irreducible algebraic variety ξ2 − k2 = 0 in C3, one concludes, using the division
lemma, that

χ̃(ξ) = (ξ2 − k2)ũ(ξ), (23)

where ũ is an entire function of the same exponential type as χ̃ ( see [5]). Therefore, by the Paley-Wiener theorem,
the corresponding u has compact support. Taking the inverse Fourier transform of equation (23), one gets:

(−∇2 − k2)u(x) = χ(x) in R3, u = 0 if |x| > R, (24)

where R > 0 is sufficiently large. By the elliptic regularity results, one concludes that u ∈ H2
loc(R3). Since u solves

the Helmholtz elliptic equation and vanishes near infinity, that is, in the region |x| > R, the uniqueness of the
solution to the Cauchy problem to the equation (24) and the path connectedness of the complement D1 := D̄′ of
the closure D̄ of D allow one to conclude that u = 0 in D1. The connectedness and path connectedness of D1

follow from our Assumptions A and from the isotopy extension theorem (see [6]). If u = 0 in D1 and u ∈ H2
loc(R3),

it follows from the Sobolev embedding theorem that the boundary conditions (3) hold. Since χ(x) = 1 in D,
equation (3) holds. The converse statement in Theorem 3 has already been established above, in our discussion of
the equivalence of Conjectures 1 and 2. Theorem 3 is proved. 2

Let us prove the equivalence of Conjectures 1, 2 and 3 in the following lemma. In the proof of this lemma we
denote these conjectures I, II, and III. The argument, used in the proof of Theorem 3, is used in the proof of a part
of Lemma 3.

Lemma 3. Conjectures 1,2 and 3 are equivalent.
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Proof of Lemma 3. III ⇒ II. If an entire function of exponential type χ̃(ξ) vanishes on the irreducible algebraic
manifold ξ2 = k2, then the function ũ := χ̃(ξ)(ξ2−k2)−1 is also entire and of the same exponential type. Its Fourier
transform u(x) solves problem (3).

II ⇒ III. If problem (3) has a solution, then multiply (3) by eikα·x, α ∈ Sn−1, integrate over D, and then by
parts, using the boundary conditions in (3) and the equation (∇2 + k2)eikα·x = 0. This yields (4).

I ⇒ III. Take the Fourier transform (in the distributional sense) of equation (1) and get χ̃(g−1ξ)f̃(ξ) = 0, where
the overline stands for the complex conjugate. Therefore, suppf̃ = ∪kCk, where Ck = {ξ : ξ2 = k2, χ̃|ξ2=k2 = 0},
and the set {k} is a discrete finite set of positive numbers. Thus, there is a k > 0 such that (4) holds.

III ⇒ I. If (4) holds, then there exists an f̃ 6= 0 supported on Ck. Then χ̃(g−1ξ)f̃(ξ) = 0. Taking the inverse
Fourier transform of this relation yields (1).

Lemma 3 is proved 2

3 Relation to analyticity

The classical Morera theorem in complex analysis says that if
∫

C
f(z)dz = 0 for any closed polygon C in a domain

D of the complex plane, and if f is continuously differentiable in D, then f is analytic in D. A simple proof is
based on a version of Green’s formula:

0 =
∫

C

f(z)dz = 2i

∫

∆

∂̄fdxdy.

Here ∆ is the plane domain with the boundary C and ∂̄f := fx+ify

2 . If
∫
∆

∂̄fdxdy = 0 for any polygon ∆, then one
passes to the limit in the formula

1
|∆|

∫

∆

∂̄fdxdy = 0,

where |∆| is the area of ∆ and the limit is taken as diam∆ → 0, so that ∆ shrinks uniformly in directions to a
point (x, y) ∈ ∆. Then for almost all points in D one gets ∂̄f = 0, and if ∂̄f is continuous, then ∂̄f = 0 everywhere
in D. This implies that f is analytic in D.

One may ask if the assumption that f is continuously differentiable can be replaced by a weaker assumption, and
if the set of polygons can be replaced by some other sets. The answer to this first question is easy: if f ∈ L1

loc(D),
then one considers a mollified function fε(z) :=

∫
ζ:|z−ζ|≤ε

ωε(z − ζ)f(ζ)dudv, where ζ = u + iv and ωε(z) is the
standard mollifying kernel ([7], p.14). It is known that fε → f in L1(D) as ε → 0, and one can select a subsequence
εj → 0, such that fεj → f almost everywhere in D. If

∫
C

f(z)dz = 0 for any closed polygon C, then
∫

C
fε(z)dz = 0

for any closed polygon C, and the above argument, applied to the C1−smooth fε, leads to the conclusion that fε

is analytic in D for all sufficiently small ε. Since a sequence fεj of analytic functions converges to f in L1(D) and
almost everywhere in D, one concludes that f is analytic in D. This follows from the closedness of the differential
operator ∂̄. Namely, one has ||fεj − f ||L1(D) → 0 and ∂̄fεj = 0, so ||∂̄fεj − 0||L1(D) → 0. Consequently, f belongs
to the domain of the operator ∂̄, and ∂̄f = 0 in L1(D). Therefore, f is analytic in D.

The second question is: can one replace the set of polygons by other sets? This question is less simple. For
example, one cannot replace polygons by the set σ(B), where B is a ball. Indeed, using the above argument one
arrives at the relation

∫
σ(B)

∂̄fdxdy = 0, and this does not imply that ∂̄f = 0, as the example on p. 2 shows.
However, any domain D which has P -property can be used in a generalization of the Morera theorem. By ∂D the
boundary of D is denoted.

Theorem 4. Assume that D has P -property, f ∈ L1
loc(R2), and

∫

∂σ(D)

fdz = 0 ∀σ ∈ G.

Then f is an entire function.
Proof. By the argument given above it is sufficient to prove this theorem assuming f C1−smooth. In this case

one has
∫

∂σ(D)

fdz = 2i

∫

σ(D)

∂̄fdxdy = 0, (25)

where z = x + iy. Since D has P -property, one concludes from the above equation that ∂̄f = 0 in R2. This means
that f is an entire function. 2
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Let Br denote a ball (disc if n = 2) of radius r centered at the origin, f ∈ L1
loc(R2), and sj , j = 1, 2, . . ., denote

positive zeros of the Bessel function J1(s).
From here to the end of Section 3 it is assumed that n = 2.
In [18] the following result is proved:
Lemma 4 If

∫
∂σ(Br)

fdz = 0 for r = r1 and for r = r2, and if r1/r2 does not belong to the set sj/sm for any
positive integers j and m, then f is an entire function.

Proof. We give a new short proof of this result, showing that it is an immediate consequence of Theorem 4.
Indeed, it follows from Example 1 with n = 2 that if (1) holds for D = Br1 , then the support of f belongs to

the set N (1) = {ξ : |ξ| = sj/r1, ξ ∈ R2 for some positive integers j}, see the proof of Theorem 3.
Similarly, if (1) holds for D = Br2 , then the support of f belongs to the set N (2) = {ξ : |ξ| = sm/r2, ξ ∈

R2 for some positive integers m}. If these two sets, N (1) and N (2), have empty intersection, then the support of
f is empty, so that f = 0. The role of f will be played by ∂f in what follows.

The set N (1) does not intersect the set N (2) if and only if sj/r1 6= sm/r2 for any positive integers j and m. This
condition is equivalent to the condition that r1/r2 does not belong to the set sj/sm for any positive integers j and
m. Under this condition one concludes that ∂f = 0, because the role of f is played in our case by ∂f , see equation
(25). Thus, f is an entire function. Lemma 4 is proved. 2

The proof of this result in [18] is much longer and more complicated.

4 Another approach to Pompeiu problem and some remarks

In Conjecture 3 we have used the equation
∫

D

eikα·xdx = 0 ∀α ∈ Sn−1, k = const > 0. (26)

In the derivation of this equation from equation (3), see Lemma 3, vector α can be an arbitrary complex vector
z ∈ M , where M ⊂ Cn is an algebraic variety defined by the equation z ·z = 1. Here z ∈ Cn and z ·w :=

∑n
j=1 zjwj .

Note that wj is used in the definition of z · w, and not its complex conjugate w̄j . Let n = 3 and z = a + ib, where
a, b ∈ R3. One checks easily that z = a + ib ∈ M if and only if a · b = 0 and a2 − b2 = 1, where a2 := a · a. Let
a = (λ2 + 1)1/2(e1 cos θ + e2 sin θ), where ej , j = 1, 2, 3, are unit vectors of a Cartesian basis in R3, and θ ∈ [0, 2π).
Let b = λe3. Here λ ∈ R is an arbitrary number. One can easily check that ±a± ib ∈ M .

Let us prove the following lemma:
Lemma 5. If (26) holds for all α ∈ Sn−1 then it holds for all α ∈ M .
Proof. For simplicity and without loss of generality the proof is given for n = 2. The function χ̃(ξ) is an entire

function of ξ ∈ C2. Let ξ = (z1, z2), zj ∈ C, j = 1, 2, zj = xj + iyj . Assume that χ̃(x1, x2) = 0 if x2
1 + x2

2 = 1.
The function g(z1) := χ̃(z1,

√
1− z2

1) is an analytic function of z1 for |z1| < δ, where δ < 1. By our assumption,
g(x1) = 0. By the uniqueness theorem for analytic functions of one complex variable, it follows that g(z1) = 0
for |z1| < δ, and, consequently, everywhere in the set (z1,

√
1− z2

1), where z1 runs through a set in C for which√
1− z2

1 is analytic. The union of this set and the set (z1,−
√

1− z2
1) is the variety M . So, if χ̃(x1, x2) = 0 in the

set x2
1 + x2

2 = 1 , then χ̃(z1, z2) = 0 in M . Lemma 5 is proved. 2

Let us write equation (26) with z = a± ib as
∫

D

e±λkx3+ik(λ2+1)1/2(x1 cos θ+x2 sin θ)dx1dx2dx3 = 0. (27)

Assume that D ⊂ R3 is a bounded domain C1−diffeomorphic to a ball.
Conjecture 6. Under these assumptions equation (27) holds for all λ ∈ R1 and all θ ∈ [0, 2π) if and only if D

is a ball.
In order to prove Conjecture 6 it may help to assume additionally that D is a convex centrally symmetric

domain. Conjecture 6 is valid without additional assumptions: its particular case is Conjecture 3, which is obtained
if z ∈ S2, and the author thinks that Conjecture 3 is correct.

If D is a ball of radius R, then equation (27) holds if kR = s 3
2 ,j , where s 3

2 ,j are positive zeros of the Bessel
function J3/2. This follows from the calculations given in Example 1. Conjecture 6, if it is correct, says that
equation (27) cannot hold for any domain, satisfying the stated assumptions, except for a ball.

We have formulated Conjecture 6 in the hope that a study of the asymptotic behavior of the integral (27) as
λ →∞ may help to prove that the integral in (27) can be zero only if D is a ball.
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Remark 2. It is proved in [10] and in [12] that if D1 ∈ P and D2 is a ”sufficiently close” to D1, then D2 ∈ P .
This means that P -property is stable in some sense. The P̄ -property is not stable: small perturbations of D lead to
domains the Fourier transform of the characteristic function of which do not have a spherical surface of zeros.

The notion of being ”sufficiently close” is defined as follows. The domain D2 is C3-smooth, strictly convex, its
Gaussian curvature is bounded from below by a positive constant, and meas(D12 \D12) is sufficiently small. Here
D12 := D1 ∩D2 and D12 := D1 ∪D2.

Remark 3. One can prove (see, for example, [12], p.412) that if D ⊂ R3 is a bounded strictly convex domain
with a smooth boundary, and χ̃D(tmα) = 0 for all α ∈ S2 and a sequence tm → +∞, then D is a ball.

Remark 4. It is easy to give examples of the domains D which have P -property: any polygon has this property
since it does not have a real-analytic boundary. An ellipsoid in Rn, n ≥ 2, has P -property unless it is a ball. This
is easy to check by calculating the Fourier transform of the characteristic function of an ellipsoid and checking that

this Fourier transform does not have a spherical set of zeros. If the equation of the ellipsoid D is
∑n

j=1

x2
j

a2
j

= 1, then
the Fourier transform of its characteristic function is

χ̃D = (2π)n/2(
n∑

j=1

ξ2
j a2

j )
−n

2 Jn/2

(
(

n∑

j=1

ξ2
j a2

j )
1/2

)
.

This is calculated by making the change of variables x′j = xj/aj , which transforms the ellipsoid into the ball of
radius 1 and the ξj variable of the Fourier transform into ξjaj , so that then the formula for the Fourier transform
of the characteristic function of the ball can be used. This formula is given in Example 1.

Remark 5. One can construct f 6= 0 satisfying equation (1) for the domain D, which fails to have P -property,
by the following method, see [12], p.406. Let |ξ| = b be the spherical surface Sb of zeros of the Fourier transform of
the characteristic function of D. Take any function A(ξ) ∈ L1(Sb) and define f̃(ξ) = A(ξ)δ(|ξ| − b), where δ(|ξ| − b)
is the delta-function supported on the sphere Sb. Then the inverse Fourier transform of f̃ is a function f 6= 0,
which satisfies equation (1). Since f̃ has compact support, by the Paley-Wiener theorem the function f is an entire
function of x. For example, if n = 3 and A(ξ) = 1, then

f(x) =
1

(2π)3

∫

|ξ|=b

e−iξ·xdξ = (2π)−
3
2 b2 J1/2(b|x|)√

b|x| ,

where the known formula

eikα·x =
∞∑

`=0

4πi`j`(k|x|)Y`(α)Y`(x0)

was used. In this formula k > 0 is a constant, α ∈ S2 is a unit vector, S2 is the unit sphere in R3, Y` are the
normalized in L2(S2) spherical harmonics, x0 := x/|x|, j`(r) :=

√
π
2r J`+ 1

2
(r), and over-line stand for complex

conjugate. Substitute for e−iξ·x the above sum and use the orthogonality of the spherical harmonics on the unit
sphere. Then only the term with ` = 0 survives the integration over the sphere |ξ| = b. This essentially yields the
expression for f(x).

Let us give an illustration to the method of this Section by considering the two-dimensional Pompeiu problem.
In polar coordinates x = r cos φe1 + r sin φe2. If α = cos θe1 + sin θe2, then α · x = r cos(φ− θ) and α ∈ M for

any complex θ. Consequently, ikα · x = rψ, where ψ := ik cos(φ− θ). One has

∫

D

eiξ·xdx =
∫ π

−π

dφ

∫ f(φ)

0

drrerψ = 0, ∀θ ∈ [−π, π], (28)

where θ ∈ [−π, π] is arbitrary, since one can choose an arbitrary α. Taking the integral over r in (28) one gets

∫ π

−π

[
ef(φ)ψf(φ)

ψ
− ef(φ)ψ − 1

ψ2
]dφ = 0. (29)

Changing the integration variable, φ−θ = ν, and using 2π periodicity of f , one gets from (29) the following formula
valid for all θ ∈ [−π, π]:

∫ π

−π

[
ef(ν+θ)ψ0f(ν + θ)

ψ0
− ef(ν+θ)ψ0 − 1

ψ2
0

]dν = 0, ψ0 := ψ|θ=0. (30)
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Differentiating (30) with respect to θ one obtains
∫ π

−π

f(ν + θ)f ′(ν + θ)ef(ν+θ)ψ0dν = 0 ∀θ ∈ [−π, π]. (31)

Returning to the integration variable φ = ν + θ in equation (31) one obtains the following equation:
∫ π

−π

f(φ)f ′(φ)ef(φ)ψdφ = 0 ∀θ ∈ M, ψ = ik cos(φ− θ). (32)

Now one can choose in the above equation cos θ = −is, sin θ =
√

s2 + 1, where s ∈ R is an arbitrary real number.
Note that the pair {−is,

√
s2 + 1} belongs to the two-dimensional variety M . Clearly, f = c is a solution to equation

(32) if c = const > 0. If one can prove that this is the only solution to equation (32), then the two-dimensional
Pompeiu problem is solved. One may try to study the asymptotic behavior of the integral in (32) as s → ∞ in
order to show that equation (32) has no other solutions other than f = c. The difficulty in this approach lies in
the fact that the phase in equation (32) is complex-valued, so the known results on the asymptotic of the integrals
with large parameter do not apply.
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