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Abstract 
 

In this paper, we investigate the properties of tail dependence with an approach which is based on the copula models and extreme value 

theory to obtain a joint distribution function of extreme events and to quantify the dependence between random variables. To achieve this 

objective, we quantify the large co-movements between the random variables returns which are based on the data set daily quotes of 

exceeds the threshold value of random variables. In this study, stochastic dependence was modeled by the copulas which it provides a 

good approach for constructing multivariate probability distributions with flexible marginal’s and different forms of dependence. Choos-

ing the right copula is very important in modeling. The multivariate distributions are easily simulated using the copulas. Finally we can 

describe the copula family which correctly represents the dependence. To demonstrate the usefulness of the proposed models, we confine 

our analysis to big price changes of energy commodity spot prices. The empirical findings demonstrated that the copula model which is 

combined the extreme value theory is a good approach to model the together extreme large changes. 

  
Keywords: Copulas, energy commodity spot prices, extreme value theory, tail dependence.  

 

1. Introduction 

This document can be used as a template for nderstanding the 

occurrence of extreme events is very important for different scien-

tific fields like energy markets, finance, seismology [1]. A rare 

event has drastic consequences. The main motivation of this study 

is research the interaction between complex systems. In this study 

we review basic ideas on temporal dependence on discrete time 

series of energy assets. In traditional approach, relationship 

between the random variables is described by multivariate 

distribution functions. The main deficit of this approach that is all 

of the marginal distribution functions must have same distribution 

family. In the other words each marginal distribution has same 

type with multivariate distribution function. This approach is not 

very common in practice. In literature, to model the dependence 

structure between random variables, as an alternative approach is 

proposed copula functions approach. Through the use of Sklar 

theorem, the copula function based on different marginal distribu-

tion family provides to create a multivariate distribution [2]. 

Tail dependence can be used to represent extreme events of be-

tween the random variables. Correlation coefficients are attractive-

ly metric for the dependence between random variables. The cor-

relation coefficients may only provide qualitative descriptions of 

the dependence between random variables. They are based on two 

point expectation with one parameter. Tail dependence has a non-

linear dependence. If we focus on simultaneously large values of 

random variables, the correlation coefficients may fail. Copula 

functions can be use to describe the nonlinear, asymmetric and tail 

dependence structures. Using the copula function we construct the 

joint distribution of the variables without to the type of their mar-

ginal distributions [3]. 

The word copula is derived by in Latin means link or tie of differ-

ent things copulare word. Copulas are models for the joint distri-

butions of random variables with arbitrary marginal distributions. 

In the other words, a copula is n - variety cumulative distribution 

on   d1,0 with uniform univariate marginal [2]. 

Copulas allows us to express dependence on a quantile scale, 

this led to of risk in terms of quantiles of loss distributions. Copula 

modeling presents a two-step approach to fitting copulas to obser-

vations data. The first the functional form determined of postulat-

ed copula models and second Secondly the inverse transform 

sampling method is applied to obtain the same marginal distribu-

tions as in the original data. The tail of a joint distribution is repre-

senting the events which are rare occurrence [4]. Understanding 

the structure of rare events is many important for politics decision 

makers and risk managers. 

In recent years, Oil and its derivatives have huge trade volumes 

in energy markets. Energy prices are determined on free market 

with demand and supply. So energy markets have become more 

volatile. Energy producers and consumers face to face the finan-

cial risks. Understanding of the joint dynamics of energy com-

modity prices have become indispensable part for managing ener-

gy risk. When, modeling of energy price process, these financial 

risks which are originating from different characteristics must be 

taken into accounts. The fluctuations in prices of the risky assets 

are led to big lose. The reason of this phenomenon is the extreme 

events which are in return distribution tails. This kind of risk is 

called the tail risk. The tail dependence can be use to modeling 

extreme relationship between random variables. 

The goal of this paper is to modeling the stochastic dependence 

structure with copula functions of between random variables and 

to characterize and measure extremely dependence which concen-

trated on the upper and lower quadrant tails of the joint distribu-
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tion. We achieve this aim by via methods for estimating tail prop-

erties from copulas and extreme value theory. These methods 

applied subsequently to analyze tail behavior of some energy 

commodity spot price data. 

The paper is organized as follows. In section 2, we present a 

brief review copula theory, in section 3, we explain the depend-

ence models and their relationship copula functions, in section 4, 

we are modeled the tail dependence with copulas, in section 5, we 

applied the models to energy data, finally in section 6, we presents 

our conclusions. 

2. Copulas 

An A copula is a multivariate distribution that separates the uni-

variate marginal and the multivariate dependence structure. The 

copula models allow us to combine marginal models with a varie-

ty of possible dependence models. To building a multivariate dis-

tribution using a copula, the each marginal variable is to transform 

a marginal variable which has a uniform distribution. The depend-

ence structure can be expressed as a multivariate distribution on 

the obtained uniforms. For further details, the theory of copulas 

we refer to [2],[5],[1],[6],[7],[8]. 

Definition2.1. a d  dimension copula is a distribution function 

on   d
1,0 with standard uniform marginal distributions. It satisfies 

the following conditions; 

 duuuCi ...,,) ,21 , it is increasing according to each 

 diui ,...,2,1,   

    0,...,0,,...,1,...1,,1,...1) 111   diiii uuuuCuuCii   

 di ,...,2,1 ,   1,0iu    

iii  For ii badi 1  following inequalities is satisfied. 
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Definition2.2. If the random variable X has a continuous marginal 

distribution F then the cumulative distribution  XF  is uniform 

distributed on interval  1,0 .Let U is standard uniform random 

variable, 

    yxFxyF  :inf1
                                                      (1) 

    xFxuFP 1
.This result is often used in simulation 

works. If we know inverse of cumulative distribution function, 

drawing the uniform numbers, we can random sampling from 

distribution function F .Let  nXXXX ,...,, 21  be a d di-

mension random. The vector with joint distribution 

   dd xXxXPXF  ,...,11  and continuous marginal dis-

tributions     d

iiiii xXPxF
1

  the components of the ran-

dom vector are uniform distributed [9]. 

Since  iX

d

i UFX
i

1 , ni ,...,2,1  the marginal distribution family 

 nXXX ,...,, 21  and        nXXX UFUFUF
ni

1
2

1
1

1 ,...,,
21


 is the 

same. Every distribution function can be expressed as a copula 

function. Furthermore a copula unified the marginal distributions 

is a special multivariate distribution function. Sklar theorem is 

associated the joint distributions of random vectors to copulas. 

Theorem 2.1(Sklar[16]) Let  dXXXX ,...,, 21 be a random 

vector with marginal distribution  dFF ,...,1 .Then there is a cop-

ula    1,01,0: 
d

C  such that 

      dddXX xFxFCxxF
d

,...,,.., 111,..,1
                                 (2) 

If each marginal iF are continuous then copula C is unique. Oth-

erwise C  only determine on dFFF  ...21 . We assume that 

iF  marginal is continuous with   xxFF 1  ,  

      ddd uFXuFXPuuuC 1
1

1
121 ,...,,...,,              (3)                       

The copulas are invariant under the strictly increasing transforms. 

The multivariate modeling with copulas consists of two parts: 

i Separate modelling of each marginal distribution 

ii Modelling the multivariate dependence structure 

Every copula  duuuC ,...,, 21 has the Frechet-Hoeffding bounds 

[2].  

   dd

d

i

i uuuMinuuuCduMax ,...,,,...,,0,1 2121

1


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

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



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        (4) 

Marginal distributions: a marginal distribution is individual prob-

ability distribution in multivariate distribution. Marginal distribu-

tions are obtained from observed data. Let random variable X has 

an invertible (CDF)    xXPxFX  . Since  xFX is uniform 

distributed on interval  1,0  for any  1,0 , 

            11 FFFXPXFP  

Let random variable U  is sampled from a uniform distribution, 

since   UXFX    and   XUFX ~1
, 
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(5   

There is much kind of copula functions. 

)i Independent copula; the independent copulas is described 

by    


d

i idB uuuuC
121 ,...,, .The random variables are inde-

pendent is if and only if their copula become independent copula.  

)ii Copulas is derivate from distribution functions: A copula can 

be obtain from probability distributions as, 

      dd uFuFFuuC 1
1

1
1 ,...,,...,                                     (6) 

Gaussian copula: 

        
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 For 2d , Copula density function of two- variable Gaussian 

copula is given by 
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21, uuuu   ,      22
12

1
1

21, uuuu  

 is Kendall’s tau,  


 1sin
2   and   is distribution func-

tion of single variety standard normal distribution. 

Farlie-Gumbel-Morgenstern (FGM) copula: For  1,1  

    21212121 11, uuuuuuuuC                                   (7) 

)iii Archimedean copula: Archimedean copulas are most widely 

used in applications. 
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Let     ,01,0  is continuous and certainly decreasing 

  01  and   0 .  

      21
1

21, uuuuC   
                                                (8)                                

It is called the Archimedean copula. Where  .  is called the gen-

erator function of Archimedean copulas. The generator function 

solely characterizes the dependence structure of random variables, 

it described by model parameter   for details [2].The relationship 

between  t  and Kendall tau ( ) is given by 

 
 

dt
t

t
 



1

0

41



                                                                      (9) 

Gumbel copula: Gumbel copula is very sensitive to the change of 

variables at the upper tail of the distributions. It can be capture 

upper tail dependence. Its generating function is     tt ln    

and    ,1  

      





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

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1

2121 lnlnexp, uuuuCGum
              (10) 

Clayton copula: Clayton copula is very sensitive to the change of 

variables at the lower tail of the distributions. It can be capture 

lower tail dependence. Its generating function is 

  1  tt , 0 ,    12  

    


1

2121 1,
  uuuuCcl

                                         (11) 

If 1X and 2X are random variables which are normal distributed, 

their joint distribution function is given as  
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A12copula:       

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  332   and  1,3334,0  

3. Dependence measures 

Testing independence between two components of a random vec-

tor is an important problem in the empirical analysis. A random 

sample    211211 ,,...,, nn XXXX  is collected from the random 

variable pair  21, XX . Then an estimator is obtained of the de-

pendence parameter. Correlation is the most widely used measure 

for dependence between random variables. However, the correla-

tion coefficient reflects the dependence structure only in very 

specific situations. Correlation fails to capture any nonlinear de-

pendencies in a data set.  

Linear correlation: The Pearson’s linear correlation coefficient 

which is defined by  
2121 21, , XXXX XXCovr   

Rank correlation: Many other popular empirical measures of de-

pendence are based on ranks. The most known rank based 

measures of dependence are Spearman’s rho and Kendall’s tau. 

Spearman’s rho: This correlation measure is used ranks instead of 

values. 11  n  and Spearman’s rho is not assume about 

distributions of random variables. Let nxxx ,...,, 21  and 

nyyy ,...,, 21 is observed values from random variables X and Y  

respectively. iR Denotes the rank of ix and iT denotes the rank 

of iy , ni
n

T
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1

,
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, is rank pairs corresponds the 

observation pairs  ii yx , . Spearman’s rho is described by 
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An alternative form 
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Empirical copula: Daheuvels was described the tests of interde-

pendence based on empirical copula nC  as follows [15]  
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Where,  1,0, 21 uu  and  CCn   for n , 

 
 
 


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2
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1

1
3,12 nn

n

n
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5%  If  96.1,1 205.02  ZZn n   then random 

variables X and Y are called independent [10]. 

 Kendall’s tau: Kendall’s tau  is a measure of correlation be-

tween two ranked variables. It is difference between the probabil-

ity that the observed data are in the same order versus the proba-

bility that the observed data are no in same order. 

For the vector  21, XX ,  ii TR ,  and  jj TR ,  being concordant 

if    0 jiji TTRR  and discordant otherwise. 

         00, '
22

'
11

'
22

'
1121  XXXXPXXXXPXX

Kendall’s tau is defined by 
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Where, nC is the number of is concordant pairs of rank and nD is 

the number of discordant pairs. Given a sample  nXXX ,...,, 21  

where  2,1, , iii XXX  . The sample estimation of Kendall’s tau 

is as,  
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1

2
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Where,  xsign  is equal to 0 for 0x  and xx  for 0x . 

Kendall’s tau is invariant to strictly increasing transformations. 

Let 1,1  nTvnRu iiii  be normalized ranks. To calcu-

late the n  drawing a line that is connecting  11,vu and 
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 22 ,vu  points. If this line has the positive slope then it takes the 

value 1 and has a negative slope it takes value-1. This procedure is 

applied to all  mm vu , and  ss vu , .The number of such line 

is   21nn . All of the -1 and 1 is sum and this sum is divided by 

  21nn   is obtained n  .Where n is sample size. To explain 

the empirical relationship between n and nC , we define a func-

tion as [17],     ijijij yyvexxIL       for  ni ,...,2,1   
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Copula function  21,uuC  is related to the Kendall’s tau as 
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2
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Fitting copulas: The building the joint distribution of vectors X  

are sensitive to  nuuuC ,...,, 21  and the marginal distribu-

tions n

iiF
1 . In generally two methods used to calibrate the copu-

la to sample data of vector X  [9].  

)i Parametric method: This method includes two steps, in first 

step, the parametric families are postulate for copula and marginal 

distributions, in second step the unknown parameters are estimat-

ed. Then copula based joint distribution is obtained by 

      dddd xFxFCxxxF
o




ˆ;,...,ˆ;,...,, 111ˆ21   

)ii Semi parametric method: This method includes two steps. First 

 duuuC ,...,, 21  is postulated, second empirical marginal 

distributions     






n

s

s
ii x

n
F

1

1
1

1ˆ  , di ,...,2,1  are deter-

mined each of observed values rank value 

   



n

s

k
i

s
i

k
i xxrank

1

1  is calculated. Then this rank is sort in 

ascending order. 

Testing of Copulas: The univariate distribution function  tKc  is 

defined as follows [11].  

 
 
 t
t

ttKc





                                                                       (18)                                                                    

i Let  
niii yx

1
,  is observed values, the distribution functions 

 ixF1  and  iyF2  values are obtained. 

ii Let      iii yFxFCt 21 ,  

iii  it  is putting in  tKc  function 

iv  Equality    1,0~ NtKc  is tested 

3.1. Tail dependence 

The correlation coefficient measures the co movements in central 

part of two random variables. Whereas we want to know that this 

two variable how is together behave in tails. Tail dependence can 

be asymmetric. Tail dependence is probability of large (small) 

values of one random variable co occurring with large (small) 

values of other random variable. In this section we interested 

probability of that given the one of the variables takes an extreme 

value then other variable taking an extreme value. We will study 

the lover and upper tail dependences. 

Definition. Let  21, XXX  be a two dimensional random vec-

tor with marginal distributions  1F  and 2F .The coefficient of 

upper tail dependence of X is defined by 

    qFYqFXP
q

u
1

2
1

1
1

lim



                                     (19) 

Definition. The coefficient of lower tail dependence of X is de-

fined as, 

 )()(lim
1
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1

11
0

qFXqFXP
q

l



                                (20) 

If  1,0,u   (  1,0,u ), we say that X has upper (lower) tail 

dependence, if 0u   ( 0l ) we say that X is upper (lower) 

independent. The coefficients of upper and lower tail dependences 

can be write in copula terms as follows, 
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Table 1: Lower and upper tails 

Copula u  l  Parameter 

Clayton 0 12  0  

Gumbel 122    0 1  

Frank 0   0  

Gaussian 0  0 11    

A12 122  
12  1  

 

Remark: The Gumbel copula is able to model the upper tail de-

pendence, whereas the Clayton copula can model lower tail de-

pendence so we can use a combination both of them as a mixed 

copula. Estimating the copula parameter : In order to estimate 

the dependence parameter  we need the estimated Kendall’s tau 

  and Pearson correlation coefficient r . 

 
Table 2: The relationship the copula and dependence parameter 

 Gaussian Gumbel Clayton Frank 
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Copula Matching: The marginal distribution is determining. A 

proper copula and its fitting method selected. Dependence struc-
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ture is representing the copula function. Each pair of observation 

is transformed into its rank based representation. 

      11211 ,..., XrankXrankXrank n  

      22221 ,..., XrankXrankXrank n , ni ,...,2,1  

 
 
1

1
,1




n

Xrank
U i

i  ,
 
1

2
,2




n

Xrank
U i

i                                  (22) 

In order to match the selected copula to experimental data, the 

joint histogram of 1U  and 2U  variables is comparing to the his-

togram of selected copula. 

4. Modeling of Extreme Dependence 

 Extreme value is defined as a value that ux excesses above 

some suitably high threshold u is observed. Disadvantage of the 

method is that if the threshold u  is small, then the sample 

includes the observations which in truth are not extreme. If the 

selected threshold  u  is large then some real extreme values is not 

included in sample. The extreme events occur generally in tails of 

distribution. The behaviour of a variable that takes values grater 

than a high threshold to model generally is used Peak Over 

Threshold (POT) method. Let nxxx ,...,, 21 are taken from iid 

random variables a random sample with an unknown distribution 

function F . The conditional distribution of excess values uxk   

over high threshold u  is described by  

       
 uF

uFyuF
uXyuXPyFu






1
                 (23)                   

Where uxy F 0  

Theorem (Pickands (1975), Belkema and de Haan (1974)). For a 

large class of the underlying distribution F  the excess distribution 

function uF can be approximated by Generalized Pareto Distribu-

tion (GPD) for increasing threshold u [18], 

     uyGyFu ,,,   

Generalized Pareto Distribution (GPD) is given by  
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x

x
xG          (24)                       

 The shape parameter    is independent of the threshold u  

whereas the scale parameter  u  . When the scale parame-

ter, 0 , 0  and 0x  , when parameter 0 , 

0x [1]. In applications, generally the parameter   is taken 

as 0 . 

Parameter estimation: There are many possible approaches for 

parameter estimation in extreme value analysis. The popular 

schemes, Maximum likelihood (ML), the method of moments 

(MOM) and probability weighted moments (PWM) 

Moment’s method: Let  nxxx ,...,, 21  be a sample of independ-

ent observations. The moment estimators of parameters is given 
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Where  x  and 
2s are sample mean and sample variance. 

Probability Weighted Moment Estimators (PWM): 
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Where    ni

n

i

ni xp
n

t ,

1

;1
1



  ,    
n

p ni

35.01
,


   and  nix ,  is 

i th order statistics of a sample with size n [12]. 

Asymptotic Tail Dependence: Let  21, XXX  be two dimen-

sional random vectors 
    n

k

kk xx
121 ,


.We concerns the tendency 

that extremely small or extremely large outcomes of 1X and 2X  

occur simultaneously. The widely used and intuitive scalar 

measures for these tendencies are provided by the coefficients of 

tail dependence (TDC). To measure between random variables, we 

will use  and  .  

Now we describe the following conditional distribution, 

   
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 1,0,
1

,1
2

11

2211
1122 
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 u

uUP

uUuUP
uUuUP  

Quantile-based dependence measure  u  is described as 

  
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u

uuC
u

log

,log
2                                                            (25)                                                

When one of the variables is known to be extreme, probability of 

being extreme in the other variable is described as  u
u


1

lim


 . 

Similarly to show other dependence, we will use the notation   
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If  1,1 and 0  then there is a negative dependence, if 

0   there are exact independent and if 0  there are posi-

tive dependence. To calculate the  empirically, we will use a 

method that is proposed by [13].Firstly the return pairs  YX ,  are 

transformed to unit Frechet marginals as,    

 XFS Xlog1 ,    YFT Ylog1                          (27)                   

Let u  be a high threshold value. We define the new variable 

 TSZ ,min  and consider the values uZ  , 
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Null hypothesis for this test statistics 

0H  : Extreme values are dependent asymptotically (i.e. 1 ) 

If   1ˆ96.1ˆ   Var  then, null hypothesis 0H  is rejected. 

In this case, it is found that the variables being studied are asymp-

totically independent. If    1ˆ96.1ˆ   Var    then null hy-

pothesis 0H  is not rejected in this case under the assumption 

that 1 the variable  and its variance are estimated as  

    
n

nu u̂  ,    
 
n

nnnu
Var uu 


2

̂    

Table 3: Summarized   asymptotic dependence 

                  Independent Dependent 

  0  1,0  

   1,1  1 
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Threshold selection: The statistical estimation methods of tails and 

quantiles are very sensitive to substantial changes in the extreme 

data. A graphical tool for threshold u  selection is based on mean 

excess function as follows     0,  uuXuXEue . 

 In this study, we use an approach that is proposed by [14]. Let  

nXXX ,...,, 21  is a random sample that it is taken from a distri-

bution with fat tails. Firstly the observed values are ordered as 

nXXX  ...21  then  
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We calculate the 

ku  values for  nk ,...,4,3  afterwards we plot 

of the points    2,...,4,3:, Rnkuk k 
.The plot should show 

an approximately linear behavior, when the underlying data follow 

a GPD. To choose an appropriate threshold for the POT method 

we search for the smallest k  where the plot is approximately 

linear.  

5. Application 

In this section, we conduct an empirical study to assertion the 

performance of our models. We analyse the dependence relation-

ship between oil spot price in Los Angeles and spot price Fuel oil 

for New York. We use daily data from 02.06.1996 to 29.04.2008. 

Firstly we research the statistical characteristics of these two ener-

gy assets then we put these findings to modelling process. 

 

 
 
 Fig.1: Los Angeles (LA) oil spot price and New York (NY) Fuel oil spot 

prices 

 

At first sight, the development of the two energy asset spot prices 

seems to be almost identical, i.e., one could think of an almost 

perfect correlation. In this study, we research that question wheth-

er the joint distribution has a (strong) tendency to generate ex-

treme values simultaneously. Sampling procedure is summarized 

as (a) standard uniform random variables iU are simulated 

(b)inverse cumulative distribution function is applied to each uni-

form random variable  iX UF
i

1
.Standardized ranks to eliminate 

the effects on modelling of marginal distributions we study with 

the ranks of the observed values instead of original values. Let 1R  

denotes the rank of the first series, and 2R   denotes the rank 

of second series. 

•  
  

n

tR
tU

211
1


 and  

 
n

R
tU

212
2


  

• The plot is drawn of pear     tUtU 21 , ,    nt ,...,2,1   

 
Fig.2. Standardized ranks for LA oil spot price and NY fuel oil spot price 

 

If 1X  and  2X are independent random variables then the ran-

dom variable 1U and 2U  also are independent. In this case, the 

scattering plot is uniformly distributed on unit square. As can 

seeing in the above plot there are a strongly correlation between 

random variables 1X and 2X .The power of correlation is meas-

ured by closeness to main diagonal. 

 
Table 4: Correlation coefficients that is estimated from observed data 

 r      

Corr. 0.864 0.668 0.864 

 

To give a brief insight into the properties of the data, Table 4 

summarize the basic descriptive statistics for LA spot oil price and 

NY fuel oil spot price the sample period. 

 
Table 5: The descriptive statistics for LA spot oil price and NY fuel oil 

spot price 

 n  Range Mean Var. Std.dev Skew Kurt 

LA 2084 0.335 
2.56E-

4 
6.38E-

4 
0.025 

-
0.096 

3.69 

NY 2084 0.69 
7.26E-

4 

9.18E-

4 
0.030 

-

1.993 
43.4 

 

Table 6: The estimations of dependence parameter  for different copulas 

Copulas 
Kendall’s tau 

and  relationship 
  

Clayton    12  4.0241 

Gumbel    11  3.0120 

Normal  2sin    0.8671 
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Table 7: Tail parameter estimations 

Copula u  l  

Clayton 0 0.8415 

Gumbel 0.7412 0 

Frank 0 0 

Gaussian 0 0 

t-copula 6958.0 lu  , 12v  

 

Let 1U and 2U are uniform distributed random variables Clay-

ton Copula,     
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Fig. 3: The volatility for LA oil return and NY fuel oil return series 
 

 
 

 

 

 
Fig. 4: 5000 simulation for different copulas 

 

Analysis of extreme values: To obtain a cumulative distribution 

function for LA oil spot price time series, we are drawn the ran-

dom sample  210021 ,...,, xxx  from BURR distribution with 

3k , 2 , 1 , 0 parameters. Firstly calculated the 

cumulative distribution values       210012211 ,...,, xFxFxF  and 

then  
        












 


210012111 log

1
,...,

log

1
,

log

1

xFxFxF
S   

Similarly for NY fuel spot price we are drawn a random sam-

ple  210021 ,...,, yyy  from DAGUM distribution. The calculated 

cumulative distribution values       210022212 ,...,, yFyFyF  
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A new series is derived from these series as 

  2100,...,2,1,,min  iTSZ iii .These series Z  is ascending 

ordered as      210021 ... ZZZ   The term 75%th of the or-

dered series Z  was chosen as the threshold value, 

i.e. 492524.1u  The number of values exceeding this threshold 

is 531un . Using the values exceeding threshold is calculated 

following statistics 25249.0ˆ    ,     0029543.0ˆ Var  

:0H The series are asymptotically dependence  1  

  135904.00029543.096.125249.1ˆ96.1ˆ   Var

Finally, calculated the test statistics 25249.0ˆ   is a meaningful 

way from  1 . Thus we can say that the series are asymptoti-

cal independent.  
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6. Conclusion  

In this paper, a general dependence model which is based on copu-

las and extreme value theory is studied to explore the relationship 

between extreme values of two random variables as a case, LA oil 

spot price and NY fuel oil spot price. Instead of real data, the 

standardized ranks are used to remove the effect of marginal dis-

tributions. The marginal distributions are fitted to LA and NY 

time series, as a result, the best fitting distribution for LA oil spot 

prices time series is Burr distribution and NY fuel oil spot prices 

time series is Log-logistic distribution. In these series, we found 

the tail dependence in these series. When, the standardized ranks 

are analyzed find that both of the series has more values in the 

lower tail. On the base of these finding, different copulas model 

are simulated, subsequently the scattering plots of simulated val-

ues and observed values are compared. Finally it is found that the 

Gumbel copula can be capturing the extreme tail dependence be-

tween LA oil spot price and NY fuel oil spot price time series. 

Finally the findings of study show advantages the extreme value 

copula approach for understanding of extreme tail dependence. 

The copulas provide a power method of analysing the dependence 

structure of two or more random variables. The copula function 

appears in any multivariate distributions as a structure that allows 

separating the marginal distributions and the dependence model. 
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