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Abstract

In the present investigation we introduce some subclasses of the function class Σ of bi-univalent functions defined in the open unit disk U,
which are associated with the quasi-subordination. We obtain the estimates on initial coefficients |a2| and |a3| for the functions in these
subclasses. Also several related subclasses are considered and connection with some known results are established.
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1. Introduction

Let A be the class of all analytic functions f which are : (i) nor-
malized by the conditions f (0) = 0 and f

′
(0) = 1 and (ii) defined

on the open unit disk U = {z : z ∈ C, |z|< 1}. The Taylor’s series
expansion of f ∈A is

f (z) = z+
∞

∑
k=2

akzk. (1)

The class of all functions in A which are univalent in the open unit
disk U is denoted by S . These univalent functions are invertible but
their inverse functions may not be defined on the entire unit disk U.
The Koebe one-quarter theorem (see [4]) ensures that the image of
U under every function f ∈S contains a disk of radius 1/4. Thus
every function f ∈S has an inverse (say g), satisfying g( f (z)) = z
for all z ∈ U and f (g(w)) = w, where |w|< r0( f ), r0( f )≥ 1/4. In
fact, it can be easily verified that the inverse function g is given by

g(w) =w−a2w2+(2a2
2−a3)w3−(5a3

2−5a2a3+a4)w4+ · · · . (2)

A function f ∈A is said to be bi-univalent in U if both f and f−1

are univalent in U. The class of all bi-univalent functions defined in
U is denoted by Σ.
Lewin [8] investigated the class Σ of bi-univalent functions and
showed that |a2| < 1.51 for the functions in the class Σ. Later,
Brannan and Clunie [2] conjectured that |a2| ≤

√
2. Also, Netanyahu

[11] proved that max f∈Σ|a2| = 4/3. Still the coefficient estimate
problem is open for each |an|, (n = 3,4, · · ·).
Brannan and Taha [3] (see also [17]) introduced certain subclasses
of the bi-univalent function class Σ similar to the subclasses S ∗(α)
and K (α) of starlike and convex functions of order α (0 < α ≤ 1)
respectively. Sirvastava et al.[16] introduced and investigated certain
subclasses of bi-univalent function class Σ and also obtained the
initial coefficient bounds.

Ma and Minda [9] introduced the classes:

S ∗(φ) =
{

f ∈S ;
[
z f
′
(z)/ f (z)

]
≺ φ(z)

}
and

K (φ) =
{

f ∈S ;
[
1+
(

z f
′′
(z)/ f

′
(z)
)]
≺ φ(z)

}
,

where φ be an analytic function with positive real part in the unit
disk U, φ(0) = 1, φ

′
(0) > 0 and maps U onto a region which is

starlike with respect to 1 and symmetric with respect to the real axis.
These classes includes several well known subclasses of starlike and
convex functions respectively as special cases.
Robertson [15] introduced the concept of quasi-subordination in
1970. An analytic function f is quasi-subordinate to another analytic
function φ , written as

f (z)≺q φ(z); (z ∈ U) (3)

if there are the analytic functions ψ and w with |ψ(z)| ≤ 1, w(0) =
0 and |w(z)| < 1 such that f (z) = ψ(z)φ(w(z)). Observe that if
ψ(z) = 1 then f (z) = φ(w(z)), so that f (z)≺ φ(z) in U. (See [10]
and [14] for work related to quasi-subordination.)
In this investigation we assumed that:

ψ(z) = A0 +A1z+A2z2 + · · · ; (|ψ(z)| ≤ 1, z ∈ U) (4)

and φ(z) is an analytic function in U with the form:

φ(z) = 1+B1z+B2z2 + · · · ; (B1 > 0). (5)

2. Coefficient Estimates for the Function Class
Rq

Σ
(λ ,φ)

Definition 2.1: A function f ∈ Σ given by (1) is said to be in the
class Rq

Σ
(λ ,φ) if the following quasi-subordination holds:[

(1−λ )
f (z)

z
+λ f

′
(z)−1

]
≺q (φ(z)−1)
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and[
(1−λ )

g(w)
w

+λg
′
(w)−1

]
≺q (φ(w)−1)

where z,w ∈ U, λ ≥ 1 and the functions g and φ are given by (2)
and (5) respectively.
Theorem 2.2: Let f (z) given by (1) be in the class Rq

Σ
(λ ,φ). Then,

|a2| ≤ min

{
|A0|B1

1+λ
,

√
|A0|(B1 + |B2−B1|)

1+2λ

}
(6)

and

|a3| ≤ min

{
(|A0|+ |A1|)B1

1+2λ
+

A2
0B2

1
(1+λ )2 ,

|A1|B1 + |A0|(B1 + |B2−B1|)
1+2λ

}
.

(7)

Proof: Since f ∈ Rq
Σ
(λ ,φ), there exist two analytic functions

u,v : U→ U with u(0) = v(0) = 0, |u(z)| < 1, |v(w)| < 1 and a
function ψ defined by (4) satisfies:[
(1−λ )

f (z)
z

+λ f
′
(z)−1

]
= ψ(z) [φ(u(z))−1] (8)

and[
(1−λ )

g(w)
w

+λg
′
(w)−1

]
= ψ(w) [φ(v(w))−1] . (9)

Define the functions p and q such that:

p(z) =
1+u(z)
1−u(z)

= 1+ c1z+ c2z2 + · · ·

and

q(w) =
1+ v(w)
1− v(w)

= 1+d1w+d2w2 + · · ·

equivalently,

u(z) =
p(z)−1
p(z)+1

=
1
2

[
c1z+

(
c2−

c2
1
2

)
z2 + · · ·

]
(10)

and

v(w) =
q(w)−1
q(w)+1

=
1
2

[
d1w+

(
d2−

d2
1

2

)
w2 + · · ·

]
. (11)

Clearly p and q are analytic in U with p(0) = q(0) = 1 and have
their positive real part in U. Hence |ci| ≤ 2 and |di| ≤ 2 (see [12]).
Using (10) and (11) together with (4) and (5) in the RHS of (8) and
(9), we get

ψ(z) [φ(u(z))−1] =
1
2

A0B1c1z+{
1
2

A1B1c1 +
1
2

A0B1

(
c2−

c2
1
2

)
+

A0B2

4
c2

1

}
z2 + · · ·

(12)

and

ψ(w) [φ(v(w))−1] =
1
2

A0B1d1w+{
1
2

A1B1d1 +
1
2

A0B1

(
d2−

d2
1

2

)
+

A0B2

4
d2

1

}
w2 + · · · .

(13)

Since the function f and its inverse g are given by (1) and (2) respec-
tively, we have[
(1−λ )

f (z)
z

+λ f
′
(z)−1

]
= (1+λ )a2z+(1+2λ )a3z2 + · · ·

(14)

and[
(1−λ )

g(w)
w

+λg
′
(w)−1

]
=−(1+λ )a2w+

(1+2λ )(2a2
2−a3)w2 + · · · .

(15)

Using (12) to (15) in (8) and (9) and then comparing the coefficients
of z,z2,w and w2; we get

(1+λ )a2 =
1
2

A0B1c1, (16)

(1+2λ )a3 =
1
2

A1B1c1 +
1
2

A0B1

(
c2−

c2
1
2

)
+

A0B2

4
c2

1, (17)

−(1+λ )a2 =
1
2

A0B1d1 (18)

and

(1+2λ )(2a2
2−a3) =

1
2

A1B1d1 +
1
2

A0B1

(
d2−

d2
1

2

)
+

A0B2

4
d2

1 .

(19)

From (16) and (18), it follows that

c1 =−d1 (20)

and

8(1+λ )2a2
2 = A2

0B2
1(c

2
1 +d2

1). (21)

Also by adding (17) in (19) in light of (20), we get

8(1+2λ )a2
2 = 2A0B1(c2 +d2)+A0(B2−B1)(c2

1 +d2
1). (22)

Applying |ci| ≤ 2 and |di| ≤ 2 in (21) and (22), we get the desired
result (6).
Next, for the bound on |a3|, by subtracting (19) from (17), we obtain

a3 = a2
2 +

2A1B1c1 +A0B1(c2−d2)

4(1+2λ )
. (23)

Using (21) with |ci| ≤ 2 and |di| ≤ 2 in (23), we get

|a3| ≤
(|A0|+ |A1|)B1

(1+2λ )
+

A2
0B2

1
(1+λ )2 . (24)

Also, using (22) with |ci| ≤ 2 and |di| ≤ 2 in (23), we get

|a3| ≤
|A1|B1 + |A0|(B1 + |B2−B1|)

1+2λ
. (25)

From (24) and (25), we get the desired result (7).
This completes the proof of Theorem 2.2.
Observe that, if we set ψ(z) = 1 in Definition 2.1, then the quasi-
subordination reduces to subordination and the subclass Rq

Σ
(λ ,φ)

reduces to RΣ(λ ,φ). Hence we get the following corollary:
Corollary 2.3: Let the function f (z) given by (1) be in the class
RΣ(λ ,φ). Then,

|a2| ≤ min

{
B1

1+λ
,

√
B1 + |B2−B1|

1+2λ

}
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and

|a3| ≤ min

{
B1

1+2λ
+

B2
1

(1+λ )2 ,
B1 + |B2−B1|

1+2λ

}
.

If we set ψ(z) = 1 and λ = 1 in Theorem 2.2, then we get the
following corollary:
Corollary 2.4: Let the function f (z) given by (1) be in the class
RΣ(φ). Then,

|a2 ≤ min

{
B1

2
,

√
B1 + |B2−B1|

3

}

and

|a3| ≤ min

{
B1

3
+

B2
1

4
,

B1 + |B2−B1|
3

}
.

Remark 2.5: Corollaries (2.3) and (2.4) are the improvements of
the estimates obtained in Theorem 2.1 given by Kumar et al. [7] and
Theorem 2.1 given by Ali et al. [1], respectively.
Remark 2.6: If we set

φ(z) =
1+(1−2β )z

1− z
= 1+2(1−β )z+2(1−β )z2 + · · · ; (0≤ β < 1)

in Corollaries (2.3) and (2.4) then we get the improvements of the
estimates obtained in Theorem 3.2 given by Frasin and Aouf [5] and
Theorem 2 given by Srivastava et al. [16], respectively.

3. Coefficient Estimates for the Function Class
S ∗,q

Σ
(φ)

Definition 3.1: A function f ∈ Σ given by (1) is said to be in the
class S ∗,q

Σ
(φ) if the following quasi-subordination holds:[

z f
′
(z)

f (z)
−1

]
≺q (φ(z)−1)

and[
wg

′
(w)

g(w)
−1

]
≺q (φ(w)−1)

where z,w ∈ U and the functions g and φ are given by (2) and (5)
respectively.
Theorem 3.2: Let f (z) given by (1) be in the class S ∗,q

Σ
(φ). Then,

|a2| ≤ min{L,M,N} (26)

where,

L =
√
|A0|(B1 + |B2−B1|), M =

√
A2

0B2
1+|A0|(B1+|B2−B1|)

2 ,

N =
|A0|B1

√
|A0|B1√

A2
0B2

1+|A0||B1−B2|

and

|a3| ≤ min{P,Q,R} (27)

where,

P =
|A1|B1

2 + |A0|(B1 + |B2−B1|),
Q =

A2
0B2

1+|A0|(B1+|B2−B1|)−2|A1|B1
2 ,

R = 1
4

[
(|A0|+2|A1|)B1 +3|A0|B1 ·max

{
1,
∣∣∣B1−4B2

3B1

∣∣∣}].

Proof: Since f ∈S ∗,q
Σ

(φ), there exist two analytic functions u,v :
U→ U with u(0) = v(0) = 0, |u(z)|< 1, |v(w)|< 1 and a function
ψ defined by (4) satisfies:[

z f
′
(z)

f (z)
−1

]
= ψ(z) [φ(u(z))−1] (28)

and[
wg

′
(w)

g(w)
−1

]
= ψ(w) [φ(v(w))−1] . (29)

Define the functions p and q analytic in U as in (10) and (11) and
then proceed similarly up to (13). Also on expanding LHS of (28)
and (29) using (1) and (2), we get[

z f
′
(z)

f (z)
−1

]
= a2z+(2a3−a2

2)z
2 + · · · (30)

and[
wg

′
(w)

g(w)
−1

]
=−a2w+(3a2

2−2a3)w2 + · · · . (31)

Using (12), (13), (30) and (31) in (28) and (29) and then equating
the coefficients of z,z2,w,w2; we get

a2 =
1
2

A0B1c1, (32)

2a3 =
1
2

A0B1c1a2 +
1
2

A1B1c1 +
1
2

A0B1

(
c2−

c2
1
2

)
+

1
4

A0B2c2
1,

(33)

−a2 =
1
2

A0B1d1 (34)

and

4a2
2−2a3 = −

1
2

A0B1d1a2 +
1
2

A1B1d1+

1
2

A0B1

(
d2−

d2
1

2

)
+

1
4

A0B2d2
1

(35)

Using (32) and (34), we get

c1 =−d1, (36)

8a2
2 = (c2

1 +d2
1)A

2
0B2

1 (37)

and

4a2 = (c1−d1)A0B1. (38)

Adding (33) and (35) and then using (38), we get

8a2
2 = A0

[
2(c2 +d2)B1 +(c2

1 +d2
1)(B2−B1)

]
. (39)

Adding (33) and (35) and then using (32) and (36), we get

16a2
2 = 2A2

0B2
1d2

1 +2(c2 +d2)A0B1 +A0(c2
1 +d2

1)(B2−B1). (40)

Adding (33) and (35) and then using (37) and (38), we get

4(A2
0B2

1 +A0B1−A0B2)a2
2 = (c2 +d2)A3

0B3
1. (41)

Now, (39), (40) and (41) along with |ci| ≤ 2 and |di| ≤ 2, gives the
desired estimate on a2 as asserted in (26).
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Next, for estimate on |a3| subtracting (33) from (35) and then using
(36), we get

−4a3 =−4a2
2 +A1B1c1 +

1
2
(d2− c2)A0B1. (42)

Using (40) in (42), we get

16a3 = 2A2
0B2

1d2
1 +4A0B1c2 +A0(c2

1 +d2
1)(B2−B1)−4A1B1c1.

(43)

Subtracting (35) from (33) and then using (39), we get

4a3 =
1
2
(3c2 +d2)A0B1 + c2

1A0(B2−B1)+A1B1c1 (44)

or

4a3 =
1
2

A0B1d2 +
3A0B1

2

[
c2−

2(B1−B2)

3B1
c2

1

]
+A1B1c1. (45)

On applying the result given by Keogh and Merkes [6] (see also [13]),
that is for any complex number z, |c2− zc2

1| ≤ 2 ·max{1, |2z−1|},
along with |d2| ≤ 2 in (45), we obtain

4|a3| ≤ |A0|B1 +2|A1|B1 +3|A0|B1 ·max
{

1,
∣∣∣∣B1−4B2

3B1

∣∣∣∣} . (46)

Equations (43), (44) and (46) along with |ci| ≤ 2 and |di| ≤ 2, gives
the desired estimate on a3 as asserted in (27) .
This completes the proof of Theorem 3.2.
Remark 3.3: If we set ψ(z) = 1 and φ(z) = [1+(1−2β )z]/(1−
z);(0≤ β < 1) in Theorem 3.2, then we have B1 = B2 = 2(1−β )
and the class S ∗,q

Σ
(φ) reduce to the class S ∗

Σ
(β ) studied by Brannan

and Taha [3]. Note that in the estimate of a2 for the class S ∗
Σ
(β ) we

get an improvement in Theorem 3.1 given by Brannan and Taha [3].
Remark 3.4: If we set ψ(z) = 1 and φ(z) = [(1+z)/(1−z)]α ;(0<
α ≤ 1) in Theorem 3.2, then we have B1 = 2α , B2 = 2α2 and the
class S ∗,q

Σ
(φ) reduce to the class S ∗

Σ,α studied by Brannan and
Taha [3]. Note that for the class S ∗

Σ,α we get the same estimate
|a2| ≤ 2α/

√
1+α as in Theorem 2.1 given by Brannan and Taha

[3].

4. Coefficient Estimates for the Function Class
K q

Σ
(φ)

Definition 4.1: A function f ∈ Σ given by (1) is said to be in the
class K q

Σ
(φ) if the following quasi-subordination holds:[(

1+
z f
′′
(z)

f ′(z)

)
−1

]
≺q (φ(z)−1)

and[(
1+

wg
′′
(w)

g′(w)

)
−1

]
≺q (φ(w)−1)

where z,w ∈ U and the functions g and φ are given by (2) and (5)
respectively.
Theorem 4.2: Let f (z) given by (1) be in the class K q

Σ
(φ). Then,

|a2| ≤ min


√

A2
0B2

1 + |A0|(B1 + |B2−B1|)
6

,
|A0|B1

2

 (47)

and

|a3| ≤ min

{
A2

0B2
1 + |A0|(B1 + |B2−B1|)−|A1|B1

6
,

3A2
0B2

1 +2(|A0|+ |A1|)B1

12

}
.

(48)

Proof: Since f ∈K q
Σ
(φ), there exist two analytic functions u,v :

U→ U with u(0) = v(0) = 0, |u(z)|< 1, |v(w)|< 1 and a function
ψ defined by (4) satisfies:[(

1+
z f
′′
(z)

f ′(z)

)
−1

]
= ψ(z) [φ(u(z))−1] (49)

and[(
1+

wg
′′
(w)

g′(w)

)
−1

]
= ψ(w) [φ(v(w))−1] . (50)

Proceeding similarly as in Theorem 2.2 and Theorem 3.2, we get

2a2z+(6a3−4a2
2)z

2 + · · ·= 1
2

A0B1c1z+{
1
2

A1B1c1 +
1
2

A0B1

(
c2−

c2
1
2

)
+

A0B2

4
c2

1

}
z2 + · · ·

(51)

and

−2a2w+(8a2
2−6a3)w2 + · · ·= 1

2
A0B1d1w+{

1
2

A1B1d1 +
1
2

A0B1

(
d2−

d2
1

2

)
+

A0B2

4
d2

1

}
w2 + · · · .

(52)

Equating the coefficients of z, z2 in (51) and w, w2 in (52), we get

2a2 =
1
2

A0B1c1, (53)

6a3 = A0B1c1a2 +
1
2

A1B1c1 +
1
2

A0B1

(
c2−

c2
1
2

)
+

A0B2

4
c2

1, (54)

−2a2 =
1
2

A0B1d1 (55)

and

(12a2
2−6a3) = −A0B1d1a2 +

1
2

A1B1d1+

1
2

A0B1

(
d2−

d2
1

2

)
+

A0B2

4
d2

1

(56)

From (53) and (55), we get

c1 =−d1, (57)

8a2 = (c1−d1)A0B1 (58)

and

32a2
2 = (c2

1 +d2
1)A

2
0B2

1. (59)

Adding (54) in (56) and then using (58) and (59), we get

48a2
2 = 2A2

0B2
1c2

1 +2(c2 +d2)A0B1 +A0(c2
1 +d2

1)(B2−B1). (60)

Clearly, (58), (59) and (60) along with |ci| ≤ 2 and |di| ≤ 2, yields
the desired result (47).
Next, subtracting (54) from (56) and then using (57), we get

−12a3 =−12a2
2 +

1
2
(d1− c1)A1B1 +

1
2
(d2− c2)A0B1. (61)

Using (60) and (61), we get

48a3 = 2A2
0B2

1c2
1 +4A0B1c2+

A0(c2
1 +d2

1)(B2−B1)−2(d1− c1)A1B1.
(62)
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Using (58) in (61), we get

−12a3 =
1
2
(d2− c2)A0B1+

1
2
(d1− c1)A1B1−

3(c1−d1)
2A2

0B2
1

16
.

(63)

Clearly, (62) and (63) along with |ci| ≤ 2 and |di| ≤ 2, yields the
desired result (48).
This completes the proof of Theorem 4.2.
Remark 4.3: If we set ψ(z) = 1 and φ(z) = [1+(1−2β )z]/(1−
z);(0≤ β < 1) in Theorem 4.2, then we have B1 = B2 = 2(1−β )
and the class K q

Σ
(φ) reduce to the class KΣ(β ) studied by Brannan

and Taha [3]. Note that we get |a2| ≤ 1−β and |a3| ≤ (1−β )(3−
2β )/3 for the functions in the class KΣ(β ), which is an improvement
in Theorem 4.1 given by Brannan and Taha [3].
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