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Abstract 
 

In this paper, we study the prey predator model with susceptible prey and predator. Stability of the system is discussed in the present 

model. We analyzed the model in terms of catch rate coefficient. 
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1. Introduction 

Studies of predator–prey interactions continue to be one of the 

most fascinating and important aspects of ecological research. The 

intense focus on this topic can be attributed to the central role of 

foraging in the lives of predators and their prey, and the im-

portance of predation in driving population, community, and evo-

lutionary dynamics. 

More recently, behavioral ecologists have begun to investigate the 

population and ecosystem consequences of predators in modifying 

the behavior of their prey such as Lima and Dill [11], Lima [12], 

Brown and Kotler [3]. This can have profound consequences for 

prey populations and the dynamics of their communities analyzed 

by Werner and Peacor [16], Schmitz et al. [15], Preisser et al. [14], 

Heithaus et al. [8], Creel and Christanson [6]. 

Predator–prey studies, especially of prey choice by predators, are 

becoming increasingly important due to anthropogenic modifica-

tion of ecosystems. For example, changes in energetic demands 

investigated by climate change could modify predator foraging 

needs and decisions, as could the introduction of exotic prey spe-

cies or reductions in naturally important prey. Predators have more 

at stake while hunting than simply the risk of missing a meal if 

unsuccessful. Some potential prey may harm or even kill their 

predator, or the habitat in which particular prey are found may 

pose an injury or mortality risk to a predator. While the potential 

for poisonous prey to harm predators has been widely considered 

in studies of diet choice, as has foraging under the risk of preda-

tion, there has been less attention focused on foraged behaviors 

and decisions of predators hunting other types of dangerous prey. 

The ability of predators to recognize dangerous prey may vary 

widely depending on the novelty of such prey (e.g. exotic prey). 

Regardless, the decisions of when to attack or avoid such prey and 

the potential costs of doing so could be an important aspect of 

ecological dynamics.  

There are numerous studies on the effects of harvesting on popula-

tion growth. In the context of predator-prey interaction, some 

studies that treat the populations being harvested as a homogene-

ous resource include those of Brauer and Soudack[1,2], Coexist-

ence region and global dynamics of a harvested predator-prey 

system discussed by Dai and Tang [7]. An ordinary differential 

equation model for a two-species predator-prey system with har-

vesting and stocking analyzed by Myerscough et al. [13]. On the 

combined harvesting of a prey-predator system obtained by 

Chaudhuri [4]. Optimal harvesting co-efficient control of steady 

state prey-predator diffusive Volterra-Lotka systems studied by 

Leung [9]. For a first look at the problem of harvesting from a 

Bio-economic or control theory point of view, see the works of 

Clark [5] and Levin et al. [10]. 

We analyzed a prey predator with vulnerable infected prey pro-

posed by Wuhaib and Hasan [17]. In this paper we discuss the 

dynamics of a communicable disease in a prey-predator model 

with susceptible prey. A susceptible prey is considered by using SI 

model. The presence of both preys has affected predator popula-

tion. We generalize a prey predator model by harvesting of the 

prey and predator under optimal conditions. The model is charac-

terized by a pair of first order non-linear differential equations. 

The existence of the possible steady states along with their local 

stability is discussed.  

2. The mathematical model 

In this paper, the model equations for a two species prey-predator 

system are given by the following system of non-linear ordinary 

differential equations and generalize the result of [17]. 

 

1 1(1 )
dX X

rX PXY q X
dt K

     

 

,
dY Y Z

PXY
dt Z Y




 

                                  
(2.1) 
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Here X is the susceptible prey population, Y is the infected prey, Z 

is the predator, r is the growth rate, K is the carrying capacity, P is 

the incidence rate, 𝜆 is the total attack rate for predator, 𝛽 is the 

handling time, e is the conversion efficiency and d is the death rate 

of predator, 1 2,q q  are catchobility coefficient and 1 2,   are effects 

applied to harvest the prey and predator species, 
Y Z

Z Y




 and 

e Y Z

Z Y




are the Michaelis-Mention-Holling [13] functional and 

numerical responses. We next reduce the number of parameters by 

letting 

 

, , ,
X Y Z

x y z t r
K K K




     

 

We suppose that , , ,
PK e d

k b c a
r r r r




     

 

Then system of equations (2.1) can be written as 
 

1 1'( ) (1 ) ,x t x x kxy q x   
 

 

'( ) ,
yz

y t kxy b
z y

 


                                     

(2.2) 

 

 2 2'( ) .
yz

z t c a q z
z y

  


 

 

Theorem. The solution of the system (2.2) is bounded. 

Proof. We define ( ) ( ) ( ) ( ).w t x t y t z t    

And let any positive number that ,a  then 

dx dy dz
w w x y z

dt dt dt
         
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1 1
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                  .
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If we take b c and assume the unhealthy prey is comparable to 

the healthy prey, we have 

 

 
 

 

2
1 12

1 1

2
1 1

(1 ) 2
(1 ) 2

2

(1 ) 2
                 

2

q
w w x q x

q

 
  

 

  
       

 
 

  
  
 
 

 

 

   
2 2

1 1 1 1(1 ) 2 (1 ) 2

2 2

q q
w w x

   


      
       

   
   

 

 

 
2

1 1(1 ) 2
.

2

q
w w

 


  
   

 
 

 

 

Suppose that 
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2

1 1(1 ) 2

2

q
v

   
  
 
 

 

 
w w v 

 
 

where 
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Then  

 

     
0
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t
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3. Equilibrium point and stability 

Two equilibrium points are  0 0,0,0E  and  1 1 1(1 ),0,0 ,E q   the 

other equilibrium point are solution to the following system of 

equation 

 

 1 11 0q x ky   
 

 

0
z

kx b
y z

 


 

 

2 2( ) 0.
y

c a q
y z
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We note that 
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a qyz
z

z y c
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This equilibrium is 2
ˆ ˆ ˆ ˆ( , , )E x y z  

 

2 2( )
ˆ

b a qb
x

k ck
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q x
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c
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This means that all populations exist with conditions 

 

   2 2 1 1 ˆ,  1 .c a q q x    
 

 

Jacobean matrix of (2.2) is given by 

 

 
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cz cy
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


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Now, Jacobean matrix of system (2.2) at 0(0,0,0)J  is 
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0
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q

J
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
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The characteristic equation is 
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 

1 1
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1 0 0
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q

a q
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     1 1 2 2         1 0q a q           
               

(3.1)
 

 

The roots of (3.1) are    1 1 2 21 ,0, .q a q     

 

The  0 0,0,0J gives three Eigen values    1 1 2 21 ,0, ,q a q   

this equilibrium point is not asymptotically stable because second 

eigenvalue has zero real part. 

The Jacobean matrix of system (2.2) at   1 1 11 ,0,0J q   is 
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The characteristic equation is 
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The roots of (3.1) are  1 1 2 2(1 ), , .q k a q      

 

The  1 1 ,1 0,0( )J q  gives three Eigen values 

 1 1 2 2(1 ), , ,q k a q     this equilibrium is not asymptotically 

stable because the second Eigen values is positive. 

Now, Jacobean matrix of system (2.2) at 2J  is 
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The characteristic equation is 
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The characteristic equation of matrix J2 is 

 
3 2              0.A B C        
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From the Routh-Hurwitz stability criterion 2J  is locally asymp-

totically stable if and only if 0, 0  and  .A C AB C    

4. Conclusion 

In this paper, the stability of the system is discussed by analyzing 

the equilibrium points. The existence of these populations are 

effected by the disease is also investigated. It is also seen that 

solutions are stable under some conditions. After observation we 

find that stability depends on catch rate coefficient. 
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