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Abstract

In this paper, we establish common fixed point theorems for a pair of weakly compatible nonself mappings satisfying generalized contractive
conditions in metric space of hyperbolic type. The results generalize and extend some results in literature.
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1. Introduction

In literature, fixed point theory has diverse results on fixed point
theorems for self-mappings in metric and Banach spaces. However,
an area that seems not broadly investigated is the fixed point
theorems for non-self mappings. Kirk [1] extended the metric space
to metric space of hyperbolic type by replacing Krasnoselskii’s
result with the framework of convex metric space. The study of
fixed point theorems for multivalued non-self mappings in a metric
space (X ,d) was initiated by Assad [2] and Assad and Kirk [3].
Many authors have studied the existence and uniqueness of fixed
and common fixed points result for nonself contraction mappings in
cone metric spaces [see; 4, 5, 6, 7 ]. Some authors studied common
fixed point theorems for non-self mappings in metric spaces of
hyperbolic type [See: 8, 9]. Motivated by Jankovic et al. [7], we
prove some common fixed point theorems for a pair of weakly
compatible non-self mappings satisfying a generalized contraction
condition in the setting of metric space of hyperbolic type.
Throughout our consideration, we suppose that (X ,d) is a metric
space which contains a family L of metric segments (isometric
images of real line segment) such that
a) each two points x,y ∈ X are endpoints of exactly one number
seg[x, y] of L, and
b) If u,x,y ∈ X and if z ∈ seg[x,y] satisfies d(x,z) = λd(x,y) for
λ ∈ [0,1] then

d(u,z)≤ (1−λ )d(u,x)+λd(u,y) (1.1)

A space of this type is called metric space of hyperbolic
type.
The following definition was introduced by Jungck et al. [4] in the
setting of cone metric spaces.
Definition 1.1 Let (X ,d) be a complete cone metric space, let C be
a non empty closed subset of X , and let f ,g : C→ X be non-self
mappings. Denote for x,y ∈C

M f ,g
1 = {d(gx,gy),d( f x,gx),d( f y,gy), d( f x,gy)+d( f y,gx)

2 } (1.2)

Then f is called a generalized gM1 -contractive mapping in C
into X if, for some λ ∈ (0,

√
2−1), there exists U(x,y) ∈M f ,g

1 such
that for all x,y ∈C,
d( f x, f y)≤ λU(x,y) (1.3)

2. Main results

Jankovic et al. [7] proved the following fixed point theorem for a
pair of non-self mappings defined on a nonempty closed subset of
complete metrically convex cone metric spaces with new contractive
conditions.

Theorem 2.1: Let (X ,d) be a complete cone metric space,
let K be a non empty closed subset of X such that for each x ∈C and
y /∈C there exists a point z ∈ δK (the boundary of K) such that
d(x,z)+d(z,y) = d(x,y).
Suppose that f ,g : C → X are such that f is a generalized gM1 -
contractive mapping of C into X and
(i) δC ⊆ gC, fC∩C ⊆ gC,
(ii) gx ∈ δC =⇒ f x ∈C,
(iii) gC is closed in X .
Then the pair ( f ,g) has a coincidence point. Moreover, if (f, g) are
coincidentally commuting, then f and g have a unique common
fixed point.

In this paper, we extend the above theorem to fixed point
theorem of weakly compatible non- self mappings in metric space
of hyperbolic type.
We state and prove our main result as follows.
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Theorem 2.2: Let X be a metric space of hyperbolic type, K a
non-empty closed subset of X and δK the boundary of K. Let δK be
nonempty and let T : K→ X and f : K∩T (K)→ X be two non-self-
mappings satisfying the following conditions:
d( f x, f y)≤ λ .µ
where
µ ∈ {d(T x,Ty),d(T x, f x),d(Ty, f y), d(T x, f y)+d(Ty, f x)

2 }) (2.1)

for all x,y ∈C, 0 < λ < 1 . If
(i) δK ⊂ T K, f K∩K ⊂ T K,
(ii) T x ∈ δK =⇒ f x ∈ K,
(iii) f K∩K is complete.
Then f and T have a coincidence point z in X. Moreover, if f and T
are weakly compatible, then z is the unique common fixed point of
f and T .

Proof: Let x ∈ δK be arbitrary. We construct three sequences ,
{xn} and {zn} in K and a sequence {yn} in f K ⊂ X as follows.
Choose z0 = x. Since z0 ∈ δK then there exists x0 ∈ K such that
z0 = T x0 ∈ δK. By (iii) f x0 ∈ K. Now choose y1 = f x0 with
y1 ∈ f K ⊂ X . This implies that f x0 ∈ f K∩K ⊂ T K. Set y1 = f x0,
we choose x1 ∈ K such that T x1 = f x0. Hence z1 = T x1 = f x0 = y1.
This gives y2 = f x1.
Since y2 ∈ f K ∩ K then y2 ∈ T K by (ii). Let x1 ∈ K with
z1 = T x1 ∈ δK such that z2 = T x2 = f x1 = y2. If f x1 = y2 /∈ K,
then there exists z2 ∈ δK(z2 /∈ y2) such that z2 ∈ seg[y1,y2]. Since
x2 ∈ K, then by (i) we have T x2 = z2. Hence
z2 ∈ δK∩ seg[y1,y2].
We can choose y3 ∈ f K ∩K, and by (ii), y3 ∈ T K and let x2 ∈ K
such that T x3 = y3 = f x2. Continuing in the process, we construct
three sequence {xn} ⊆ K, {zn} ⊆ K and {yn} ⊆ f K ⊂ X such that
(a)yn = f xn−1
(b) zn = T xn,
(c) zn = yn if and only if yn ∈ K
(d) zn /∈ yn whenever yn /∈ K and zn ∈ δK such that
zn ∈ δK∩ seg[ f xn−2, f xn−1].
This proves that f and T are non-self mappings.

Remark 2.3: By (d) if zn 6= yn, then zn ∈ δK and combin-
ing (b), (ii) and (a) we have zn+1 = yn+1. Likewise zn−1 = yn−1 ∈ K.
If zn−1 ∈ δK, then it implies zn = yn ∈ K.
Next, we show that xn 6= xn+1 for all n. From (a), (b), (c) and (d) we
can establish three possibilities.
(1) zn = yn ∈ K and zn+1 = yn+1;
(2) zn = yn ∈ K but zn+1 6= yn+1;
(3) zn 6= yn ∈ K in which case zn ∈ δK∩ seg[ f xn−2, f xn−1].
Now
Case (1)
Let zn = yn ∈ K and zn+1 = yn+1. Using (2.1) we obtain
d(zn,zn+1) = d(yn,yn+1) = d( f xn−1, f xn)≤ λ .µn

where µn ∈ {d(T xn−1,T xn),d(T xn−1, f xn−1),d(T xn, f xn),

d(T xn−1, f xn)+d(T xn, f xn−1)
2 })

= {d(zn−1,zn),d(zn−1,yn),d(zn,yn+1),
d(zn−1,yn+1)+d(zn,yn)

2 }

= {d(zn−1,zn),d(zn−1,zn),d(zn,zn+1),
d(zn−1,zn+1)+0

2 }

= {d(zn−1,zn),d(zn−1,zn),d(zn,zn+1),
d(zn−1,zn)+d(zn,zn+1)

2 }

Obviously, there are infinite many n such that at least one of
the following cases holds:
I: d(zn,zn+1)≤ λd(zn−1,zn)

II: d(zn,zn+1)≤ λ .d(zn−1,zn)

III: d(zn,zn+1)≤ λ .d(zn,zn+1). A contradiction.

IV: d(zn,zn+1)≤ λ .
d(zn−1,zn)+d(zn,zn+1)

2 }

≤ λ

2 (d(zn−1,zn)+
λ

2 d(zn,zn+1)) implies
d(zn,zn+1)≤ λd(zn−1,zn)

From I, II, III, IV it follows that
d(zn,zn+1)≤ λ .d(zn−1,zn) (2.2)

Case 2
Let zn = yn ∈ K but zn+1 6= yn+1. Then zn+1 ∈ δK ∩ seg[yn,yn+1].
From (1.1) with u = y, we obtain
d(y,z)≤ (1−λ )d(x,y)

Therefore
d(x,y)≤ d(x,z)+d(z,y)≤ λd(x,y)+(1−λ )d(x,y) = d(x,y)
Hence
z ∈ seg[x,y] =⇒ d(x,z)+d(z,y) = d(x,y) .
Since zn+1 ∈ seg[yn,yn+1] = seg[zn,yn+1], we have

d(zn,zn+1) = d(yn,zn+1) = d(yn,yn+1) − d(zn+1,yn+1) <
d(yn,yn+1)

In view of case (1), we obtain
d(yn,yn+1)≤ λ .d(zn−1,zn).

This implies that d(zn,zn+1)≤ λ .d(zn−1,zn).

Case (3)
zn 6= yn. Then zn ∈ δK ∩ seg[ f xn−2, f xn−1]. i.e. zn ∈
δK∩ seg[yn−1,yn]
By remark (2.3) we have zn+1 = yn+1 and zn−1 = yn−1 . This
implies that
d(zn,zn+1) = d(zn,yn+1)

≤ d(zn,yn)+d(yn,yn+1)

= d(zn−1,yn)−d(zn,zn−1)+d(yn,yn+1)

= d(yn−1,yn)−d(zn,zn−1)+d(yn,yn+1) (2.3)

We shall find d(yn−1,yn) and d(yn,yn+1). Since zn−1 = yn−1
then we can conclude that
d(yn−1,yn)≤ λ .d(zn−2,zn−1), (2.4)
with respect to case (2).
Now
d(yn,yn+1) = d( f xn−1, f xn)≤ λ .µn

where µn ∈ {d(T xn−1,T xn),d(T xn−1, f xn−1),d(T xn, f xn),

d(T xn−1, f xn)+d(T xn, f xn−1)
2 })

= {d(zn−1,zn),d(zn−1,yn),d(zn,yn+1),
d(zn−1,yn+1)+d(zn,yn)

2 }

= {d(zn−1,zn),d(zn−1,yn),d(zn,zn+1),
d(zn−1,zn+1)+d(zn,yn)

2 }

≤ {d(zn−1,zn),d(zn−1,yn),d(zn,zn+1),

d(zn−1,zn)+d(zn,zn+1)+d(zn,zn−1)−d(zn−1,yn)
2 }

≤ {d(zn−1,zn),d(yn−1,yn),d(zn,zn+1),
2d(zn−1,zn)+d(zn,zn+1)

2 }

Clearly, there are infinite many n such that at least one of
the following cases holds:
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I: d(yn,yn+1)≤ λ .d(zn−1,zn)

II: d(yn,yn+1)≤ λd(yn−1,yn)≤ λ 2.d(zn−2,zn−1)

III: d(yn,yn+1)≤ λ .d(zn,zn+1)

IV: d(yn,yn+1)≤ λ .d(zn,zn−1)+
λ

2 d(zn,zn+1)
Substituting I, II, III, IV in (2.4) yields
d(zn,zn+1)≤ λ .d(zn−2,zn−1)−d(zn,zn−1)+λ .µn

from which we have four cases:
V: d(zn,zn+1)≤ λ .d(zn−2,zn−1)−d(zn,zn−1)+λ .d(zn−1,zn)

≤ λ .d(zn−2,zn−1)− (1−λ )d(zn,zn−1)

≤ λ .d(zn−2,zn−1)

VI: d(zn,zn+1)≤ λ .d(zn−2,zn−1)−d(zn,zn−1)+λ 2.d(zn−2,zn−1)

≤ (λ +λ 2)d(zn−2,zn−1)−d(zn,zn−1)

≤ (λ +λ 2)d(zn−2,zn−1)

VII: d(zn,zn+1)≤ λ .d(zn−2,zn−1)−d(zn,zn−1)+λ .d(zn,zn+1)

≤ λ

1−λ
d(zn−2,zn−1)− 1

1−λ
d(zn,zn−1)

≤ λ

1−λ
d(zn−2,zn−1)

VIII: d(zn,zn+1) ≤ λ .d(zn−2,zn−1)− d(zn,zn−1)+λ .d(zn,zn−1)+
λ

2 d(zn,zn+1)

≤ λ .d(zn−2,zn−1)− (1−λ )d(zn,zn−1)+
λ

2 d(zn,zn+1)

≤ 2λ

2−λ
.d(zn−2,zn−1)− 2(1−λ )

2−λ
d(zn,zn−1)

≤ 2λ

2−λ
.d(zn−2,zn−1)

From V, VI, VII, VIII we obtain
d(zn,zn+1)≤ k.d(zn−2,zn−1) where

k = max{λ ,λ +λ 2, λ

1−λ
, 2λ

2−λ
}

Combining Cases 1, 2, 3 we get
d(zn,zn+1)≤ k.ωn

where ωn ∈ {d(zn−2,zn−1),d(zn−1,zn)} and

k = max{λ ,λ +λ 2, λ

1−λ
, 2λ

2−λ
}

Following the procedure of Assad and Kirk [3], it can be
easily verify by induction that for n > 1
d(zn,zn+1)≤ k

n−1
2 .ω2 (2.5)

where ω2 ∈ {d(z0,z1),d(z1,z2)}.

For n > m and using (2.5) and the triangle inequality we
have
d(zn,zm)≤ d(zn,zn−1)+d(zn−1,zn−2)+ · · ·+d(zm+1,zm)

≤ (k
n−1

2 + k
n−2

2 + · · ·+ k
m−1

2 ).ω2

≤
√

k
m−1

1−
√

k
.ω2→ 0, as m→ ∞.

The sequence is Cauchy. Since zn = f xn−1 ∈ f K ∩ K is
complete, there is some z ∈ f K ∩K such that zn → z. Let w in
K be such that Tw = z. By the construction of {zn}, there is a

subsequence {znk} such that znk = ynk = f xnk−1 and f xnk−1 → z We
show that f w = z.
d( f w,z)≤ d( f w, f xnk−1)+d( f xnk−1 ,z)≤ λ .µnk +d( f xnk−1 ,z)
where
µnk ∈ {(d(Tw,T xnk−1),d(T xnk−1 , f xnk−1),d(Tw, f w),

d(Tw, f xnk−1 )+d(T xnk−1 , f w)
2 }

Taking znk = ynk = f xnk−1 → z as n→ ∞ yields

µn ∈ {0,d(z, f w),0, d(z, f w)
2 }

µn ∈ {d(z, f w), d(z, f w)
2 }

Thus, we have
i) d( f w,z)≤ λd(z, f w)+d( f xnk−1 ,z)≤ λd(z, f w)

Since λ < 1 then d( f w,z) = 0. This implies z = f w

ii) d( f w,z)≤ λ

2 d( f w,z)

Since λ < 1 then d( f w,z) = 0. Hence z = f w. In all cases
we have z = f w.
Suppose that T and f are weakly compatible, then we have
z = f w = Tw =⇒ f z = f Tw = T f w = T z.
Next we prove that z = f z = T z. Suppose z 6= f z then using 2.1 we
obtain
d( f z,z) = d( f z, f w)≤ λ .µ
where
µ ∈ {d(T z,Tw),d(T z, f z),d(Tw, f w),

d(T z, f w)+d(Tw, f z)
2 }

≤ {d(z,z),d(z, f z),d(z,z), d(z,z)+d(z, f z)}

≤ {d(z, f z), d(z, f z)
2 }

Case (i)
d( f z,z)≤ λd( f z,z) It is a contradiction. Hence z = f z
Case(ii)
d( f z,z)≤ λ

2 d( f z,z)

It is also a contradiction. This imples that z = f z. Therefore we
obtain z = f z = T z. Thus T and f have a common fixed point.
The uniqueness of the common fixed point follows easily from (2, 1).

Remark 2.4 : Theorem 2.2 is an extension of the result of
jankovic [7] .
Setting T = Ix , the identity mapping of X in Theorem 2.2 , we
obtain the following result.

Corollary 2.5: Let (X ,d) be metric space of hyperbolic
type, K a non-empty closed subset of X and δK the boundary of K.
Let δK be nonempty such that f : K→ K satisfies the condition
d( f x, f y)≤ λ .µ
where
µ ∈ {d(x,y),d(x, f x),d(y, f y), d(x, f y)+d(y, f x)

2 }) (2.6)

for all x,y ∈ k, 0 < λ < 1 and f has the additional property
that for each x ∈ δK and f x ∈ K. Then f has a unique fixed point.

Corollary 2.6: Let X be a metric space of hyperbolic type,
K a non-empty closed subset of X and δK the boundary of K. Let
δK be nonempty and let T : K→ X and f : K∩T (K)→ X be two
non-self- mappings satisfying the following conditions:
d( f x, f y)≤ λ (d(T x, f x)+d(Ty, f y)) (2.7)

for all x,y ∈C, 0 < λ < 1
2 . If
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(i) δK ⊂ T K, f K∩K ⊂ T K,
(ii) T x ∈ δK =⇒ f x ∈ K,
(iii) f K∩K is complete.
Then f and T have a coincidence point z in X. Moreover, if f and T
are weakly compatible, then z is the unique common fixed point of
f and T .

Example 2.7 : Let X be the set of real numbers with the
usual metric, K = [0,+∞) and let T : K→ X and f : K∩T (K)→ X
be two non-self mappings defined by T x = 4x and f x = 4x

1+4x for all
x ∈ K.
Taking x = 1

2 and y = 1
4 we obtain λ = 1

6 . Thus T and f satisfied
(2. 1) and all the hypotheses in Theorem 2.2 are satisfied. T and f
have a unique common fixed point z = 0.

3. Conclusion

In this section, we proved that in a metric space of hyperbolic
type, two non-self mappings f and T satisfying certain contractive
conditions have a coincidence point. Moreover, if the maps are
weakly compatible then f and T have a unique common fixed point.
We gave an example to validate our results.
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