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Abstract

By introducing some parameters using the weight function and the technique of real analysis, a new Hilbert-type integral inequality with a

non-homogeneous kernel as i

7@2 (a > 1) and its equivalent form are established. As application, the constant factor on the plane is the

best value and its extension form with some parameters is also considered.
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1. Introduction

If0 <[5 £ (x)dx < 0,0 < [5° g2
famous integral inequalitym

LT gy <[ wa [ erant.

where the constant factor 7 is the best possible.(1) is important in
analysis and its application[2_3]. Since 1998, by introduced the
coaju%ate index,a number of extensions (1) were given by Yang et
al.l+=7l.

In this paper, by introducing some parameters and using the way of
weight function, a new inequality with a non-homogeneous kernel
as follows is established:

I8 IS tagrr (@ 2 DF(@)g(y)dxdy <

11
23(571)(/ r dx%/ 22 ()dy)? @

(x)dx < oo, Hilbert established the

where the constant factorZB( 7 4) is the best possible. As applica-
tion, the equivalent form and its extension form are obtained.

2. Some Lemmas
First, function is givenmz

1
B(u,v) :/0 X1 —x)" " = B(v,u) (u,v > 0) 3)

Lemma 2.1. 0 < 11 < }1,2 < l,a > l,n(a,ll,lz) =
ST B 1=A) +Bl—A,1-1)0 < 4 < 4 < La
1,n(a,A,4) := a%l [B(A1,1 = A2) +B(Ay — Ay, 1 — Ay)) define the

following weight function:
| 1
o(y) = o Wﬁdy (y>0),

(\Y

) =I5 s o Y

m‘lz y ()C > O)a

then we have
o(x) =o(y) =
Proof

n(a,A1,22). )
Setting u = axy and by (3),we obtain

1 yH 1 -1
a du
=l (ay Ta )4

- T}M[/(;I (1

[ =1 A—1
T)lzu du+/1 mu du]

oy) =

1
= aTl[B(l],l*lz)*FB(lz*lhl712)}=T](a7V|,V2).

Similarly, we can calculate that o(x) = n(a,vi,v2).
Lemma 2.2.  As the assumption of Lemma 2.1, if p > 1,
1, f(x) > 0,we have

- 1 [ peo p
Ji= 7 yph! [‘[0 Wf(x)dx} dy <

a2 a7 [ a2

Proof By Holder’s inequality with weight[s],we obtain

. 1 (1=4)/q (1=21)/p

POt = 7 s e m;, lds
00 1
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»ta

LfP (x)dx ®)

L-A)(p-1) J(1-21)(g-
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By (4)and Fubini’s theorem®), we obtain

FP)dxp P (6)

1
=yr

A
[ all Az]p 1/ / 1 1)(p=1)
’ I1 —axy|’1° y(1=41)

_ [n(a,/h,itz]‘”‘/o ()P40~ 2 (x)dx

Hence by the above results, we have (5). The lemma is proved.
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3. Main results

Theorem 3.1. As the assumption of Lemma 2.1, if p >
Ly +g =1 (x)80) 20,0 < [Fxr2) 71 P (x)dx < 0,0 <
f(;”yq(l_’l')_lgq (y)dy < oo, then we have two equivalent inequal-
ities as

I'= [y Wf(x)g(y)dxdy <n(a,A,A)x

" p(1=A)— g(1—21)—
{/0 xP } {/ b (y)dy} ; (7
J:f(;x’ypllfl [f(')” Wf(x)dx]pdy<
(0@, 21, A2)]P /O P20 2 () g ®)

Proof By the conditions of theorem and Hélder’s inequality,we
conform that the middle of (6) keeps the form of strict inequal-
ity,Hence(6) takes the strict sign-inequality,so does (5). In addition,
we have (7). By Holder’s inequality (8] ,we find

1= [T f e sl gy <

]1/[’[/() yt(1=2)=1 64y qy]1/a )

Then by (8), we have (7).On the other hand,assuming that (7) is valid
setting g(y) :== yPh [ [5? Toagrs f(@))dagr™!

,then we have J = fd”yq(l*}”)*lgq(y)dy,Through (5),it follows J <
oo If] = O,then (8)is naturally valid.If 0 < J < oo, then by(7),we find
0 < foyt =M gt (y)dy =T =1 < n(a, 1, 22)

1

p(1=A)—1 ¢p % ~ q(1-41)—-1 q ‘
{/0 P (x)d }{/Oy g(y)dy}7 (10)
JVp = {f?yq(l’l‘)’lgq(y)dy}ﬁ <
n(a,khlz){/omxl’l —M)— LP(x)d }E' an

and then we have (8),which is equivalent to (7). The Theorem is
proved.

Theorem 3.2. Under the conditions of Theorem 3.1,the constants
N(a,A1,A2)and [n(a,A1,A)|Pin (7)and (8) are the best value.
Proof For0 < e < pvy,if

TR (Ll € (0,1]
7 '_{ 0, x€(1,e0)
o 0, y€(0,1)

we can calculate 1 1
Te= {00 e {50 R0 g )y | = by
Fubini s lheorem[gl we obtain
=JoJo = (m‘aqf( x)§(x)dxdy
:jlwy/ll e/q—1 [jl 1 x/lmts/pfldx] dy

[1—axy[*2
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(u=axy) hrelp fl y e [ 0 Ti—u uhite/p du] dy

_ 1 o —g—] 1 yMte/p—1 ay A|+e/p 1
= gt {7 [l G e I ] v}
o 1 1 rl ghite/p=1 _ 1 Al+e/p 1
— ahElr {E 0 u(l u) du+f1 ( a uy & ) (u71)12 du}
1 1 1 ghte/p—1 o l] s/q
[ e )
If there exists a positive number k< n (a M ,A2),such that (7)is still
valid when we replace M (a,A1,A;) by k,then in particular f,g, by
the above results ,we find

1 1 yhite/p-1 oo M —E/q-1
e { b “(1 s du-+a® "<u = du}
el < ekJ =k. (12)

By Fatou lemmal®) and(12),we obtain

(a l],lg) =
]01 Lim T l)a whitelp= ld”"‘jl Lim a lu)/l ”llig/qilu:| <
=0t =0t

1 g g L M+e/p—1 1 Ai—e/q—1
a“gl%ﬁ[jo (o e |7 e ] < k

Hence k = n(a,A1,A)is the best value of (7).We conform that
M(a,A1,22)]F in (8)is the best possible, otherwise we can get a
contradiction by (9) that the constant in (7) is not the best possi-
ble.The theorem is proved.

4. Conclusion

Fora=1,A; = 4,12 2,p =g =21n (7), it deduces to (2). Hence
inequality (7) is the best extension of (2).
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