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Abstract

There are several methods for proving the existence of the solution to the elliptic boundary problem Lu =
f in D, u|S = 0, (∗). Here L is an elliptic operator of second order, f is a given function, and uniqueness
of the solution to problem (*) is assumed. The known methods for proving the existence of the solution to (*)
include variational methods, integral equation methods, method of upper and lower solutions. In this paper a
method based on functional analysis is proposed. This method is conceptually simple. It requires some a priori
estimates and a continuation in a parameter method, which is well-known.
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1. Introduction

Consider the boundary problem

Lu = f in D, (1)

u = 0 on S, (2)

where D ⊂ R3 is a bounded domain with a C2−smooth boundary S, L is an elliptic operator,

Lu = −∂i(aij(x)∂ju) + q(x)u. (3)

Here and below ∂i = ∂
∂xi

, over the repeated indices summation is understood, 1 ≤ i, j ≤ 3, aij(x) = aji(x),
=aij(x) = 0,

c0|ξ|2 ≤ aij(x)ξiξj ≤ c1|ξ|2, ∀x ∈ D, (4)

where c0, c1 > 0 are constants independent of x and |ξ|2 =
∑3

j=1 |ξj |2. We assume that q(x) is a real-valued
bounded function, |∇aij(x)| ≤ c. By c > 0 various estimation constants are denoted. In this paper the Hilbert space
H := H0 := L2(D), the Sobolev space H1

0 , the closure of C∞
0 (D) in the norm of the Sobolev space H1 = H1(D),

and the Sobolev space H2
0 := H2(D) ∩H1

0 are used.
We assume that problem (1)-(2) has no more than one solution. This, for example, is the case if

(Lu, u) ≥ c2(u, u), ∀u ∈ D(L), (5)
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where c2 > 0 is a constant, and D(L) = H2
0 . Let us denote the norm in the Sobolev space H` by the symbol || · ||`,

|| · ||` =
(∫

D

(|u|2 + |∂u|2 + |∂2u|2)dx
)1/2

. (6)

By |∂u|2 the sum of the squares of the derivatives of the first order is denoted, and |∂2u|2 is understood similarly.
There is an enormous literature on elliptic boundary problems (see [1], [2], [3], [5], [6], [7]) to name just a few

books. Several methods were suggested to study problem (1) - (2): Hilbert space method, based on the Riesz
theorem about bounded linear functionals ([5], [6]), integral equations of the potential theory ([7]), method of lower
and upper solutions ([2]).

The goal of this paper is to suggest a method for a proof of the existence of the solution to problem (1) -
(2), based on functional analysis. This method is simple, short, and does not require too much of a background
knowledge from the reader.

The background material, that is used in our proof, includes the notions of closed (and closable) linear unbounded
operators and symmetric operators (see [4]), second basic inequality (see [1], [2], [5], [6])

||Lu||0 ≥ c3||u||2, ∀u ∈ D(L), (7)

and the definition and basic properties of the mollification operator, see, for example, [1].
Let us outline the ideas of our proof.
We prove that

1) the range R(L) is a closed subspace of H0;

2) L is closed in H0;

3) R(L)⊥ = {0}.

This implies that R(L) = H, that is, problem (1) - (2) has a solution. Uniqueness of the solution follows trivially
from the assumption (6).

Let us summarize the (well-known) result.

Theorem 1.1. Assume that S is C2- smooth, inequalities (4), (6) hold, and q is a real-valued bounded function.
Then problem (1) - (2) has a solution in H2

0 for any f ∈ H0, and this solution is unique.

Remark 1.1. We are not trying to formulate the result in its maximal generality. For example, one may consider
by the same method elliptic operators which are non-self-adjoint in the sense of Lagrange. In Section 2 Remark 2.2
addresses this question.

In Section 2 proofs are given.

2. Proof

It follows from (6) that

||Lu|| ≥ c2||u||2 ≥ c2||u|| ∀u ∈ D(L), ||u|| := ||u||0. (8)

Therefore, if Lu = 0 then u = 0. This proves the uniqueness of the solution.
To prove the existence of the solution it is sufficient to prove that the range of L, denoted by R(L), is closed

and its orthogonal complement is just the zero element of H0. Indeed, one has

H = R(L)
⊕

R(L)⊥, (9)

where R(L)⊥ denotes the orthogonal complement in H = H0. Therefore, if

R(L) = R(L), (10)

and

R(L)⊥ = {0}, (11)
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then

R(L) = H, (12)

and Theorem 1.1 is proved.
The closedness of R(L) follows from inequality (7). Indeed, if Lun −−→

H0
f then, by (8), un −−→

H2
0

u, so u ∈ D(L),

and Lu = f . A more detailed argument goes as follows.
Let v ∈ D(L) = H2

0 be arbitrary. Then

(f, v)←−−−−
n→∞

(Lun, v) = (un, Lv) −−−−→
n→∞

(u, Lv), ∀v ∈ D(L). (13)

Inequality (7) implies that u ∈ H2
0 = D(L). Therefore, formula (13) implies Lu = f . This argument proves that

R(L) is a closed subspace of H0 and the operator L is closed on D(L).
Let us now prove that R(L)⊥ = {0}. Assume the contrary. Then there is an element h ∈ H0 such that

(Lu, h) = 0, ∀u ∈ D(L) = H2
0 . (14)

We want to derive from (14) that h = 0. To do this, first assume that L = −∆, where ∆ is the Laplacian. Take an
arbitrary point x ∈ D, choose ε > 0 so that the distance d(x, S) from x to S is larger than ε, and set u = wε(|x−y|),
where wε(|x|) is a mollification kernel (see, for example, [1], p.5 ). This implies that wε(|x|) ∈ C∞

0 (D) ⊂ D(L), and

lim
ε↓0
||
∫
D

wε(|x− y|)h(y)dy − h(x)|| = lim
ε↓0
||wε ∗ h− h|| = 0, (15)

where wε ∗ h denotes the convolution. Then equation (14) yields

−
∫
D

∆ywε(|x− y|)h(y)dy = −∆xwε ∗ h = 0, x ∈ D. (16)

Multiply (16) by ηε := wε ∗ h, integrate over D, and then integrate by parts, taking into account that ηε = 0 on S
if dist(x, S) > ε. The result is∫
D

∇ηε(x) · ∇ηε(x)dx = 0. (17)

From (17), (4) and (6) it follows that ∇ηε = 0 in D, so ηε = const in D. Since this constant vanishes at the
boundary S, it is equal to zero. Thus

ηε(x) = wε ∗ h = 0 in D. (18)

Let ε ↓ 0 in (18) and get h = 0 in D. Thus, R(∆)⊥ = {0}, so R(−∆) = H0 = L2(D).
Let us now prove that R(L) = H0 for the operator (3). This is proved by a continuation in a parameter. Define

Ls = L0 + s(L − L0), 0 ≤ s ≤ 1, L0 = −∆, L1 = L. We prove that R(Ls) = H0 for all 0 ≤ s ≤ 1, and the map
Ls : H

2
0 → H0 is an isomorphism. For s = 0 this was proved above.

Consider equation (1) with L = Ls and apply the operator L−1
0 to this equation. The result is

u+ sL−1
0 (L− L0)u = L−1

0 f. (19)

This equation is in the space H2
0 . The norm of the operator sL−1

0 (L− L0) in H2
0 is less than one if s is sufficiently

small. Indeed, inequality similar to (7) holds for Ls for any 0 ≤ s ≤ 1 with the same constant c3, because this
constant depends only on the bounds on the coefficients of Ls and these bounds can be chosen independent of
s ∈ [0, 1]. Thus,

||Lsu||0 ≥ c3||u||2, ∀u ∈ H2
0 , 0 ≤ s ≤ 1. (20)

Therefore,

||L−1
0 (L− L0)u||2 ≤

1

c3
||(L− L0)u||0 ≤ c′3||u||2, ∀u ∈ H2

0 , (21)
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because ||(L − L0)u||0 ≤ c||u||2, where c > 0 is a constant independent of s. This constant depends only on the
bounds on the coefficients of L. Consequently, if sc′3 < 1, that is, if s < (c′3)

−1, then equation (19) is uniquely
solvable in H2

0 for any f ∈ H0, and R(Ls) = H0.
Let s0 = 1

2 (c
′
3)

−1. Define Ls0+s′ = Ls0 + s′(L − Ls0). Applying the same argument and using the fact that
||L−1

s0 ||H0→H2
0
does not depend on s0, one gets

||L−1
s0 (L− Ls0)u||2 ≤ c′3||u||2. (22)

Therefore, for s′ < (c3)
−1, one has

||s′L−1
s0 (L− Ls0)|| < 1. (23)

Consequently, repeating the above argument finitely many times one reaches the operator L and gets both conclu-
sions: R(L) = H0 and L is an isomorphism of H2

0 onto H0.
Theorem 1.1 is proved.

Remark 2.1. The method of continuation in a parameter goes back to [8].

Remark 2.2. Consider the operator L1 = L + L′, where L′ is an arbitrary first order differential operator and L
is the same as in Section 2. The operator L1 is not necessarily symmetric. Problem (1) - (2) is equivalent to the
operator equation

u+Au = L−1f in H0, (24)

where

A = L−1L′ (25)

is a compact operator in H0. This follows from the Sobolev embedding theorem ([1], [2]).
Therefore, the Fredholm alternative holds for equation (24). So, if the homogeneous version of the equation (24)

has only the trivial solution (zero solution) then equation (24) is solvable for any f , and its solution u ∈ H2
0 .

Remark 2.3. If L is symmetric on D(L) = H2
0 (D), then Theorem 1.1 shows that L is self-adjoint on D(L). Indeed,

the definition of the adjoint operator L∗ says that w ∈ D(L∗) if (Lu,w) = (u,w∗) for all u ∈ D(L). By Theorem
1.1 there exists z ∈ D(L) such that Lz = w∗. Thus, (Lu,w) = (u, Lz) = (Lu, z). Thus, w = z. Consequently,
D(L) = D(L∗), and L = L∗, as claimed.
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