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Abstract

The purpose of this paper is to prove the global existence in time of solutions for the strongly coupled reaction-
diffusion system: 

∂u
∂t − d1∆u− d2∆v = f (u, v) in R+ × Ω
∂u
∂t − d3∆u− d4∆v = g (u, v) in R+ × Ω
∂u
∂η = ∂v

∂η = 0 in R+ × Ω

u(., 0) = u0(.), v(., 0) = v0(.) in Ω

with full matrix of diffusion coefficients. Our techniques of proof are based on Lyapunov functional methods and
some Lp estimates. we show that global solutions exist. Our investigation applied for a wide class of the nonlinear
termsf and g.

Keywords: Global Existence, Reaction Diffusion Systems, Lyapunov Functional.

1. Introduction

In this paper we study the following semilinear parabolic system



∂u

∂t
− d14u− d24v = f(u, v) in R+ × Ω

∂v

∂t
− d34u− d44v = g(u, v) in R+ × Ω

(1.1)

Where Ω is a regular and bounded domain of Rn, (n ≥ 1), u = u(t, x)
v = v(t, x), x ∈ Ω, t > 0 are real valued functions, ∆denotes the Laplacian operator, and the constants of

diffusion d1, d2, d3, d4 are assumed to be nonnegative.
System (1.1) is subjected to the following boundary conditions

∂u

∂η
=

∂v

∂η
= 0 in R+ × ∂Ω

(1.2)
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and the initial data

u(., 0) = u0(.), v(., 0) = v0(.) in Ω (1.3)

which are assumed to be nonnegative.
The above system (1.1)–(1.3) arises in physics, chemistry and various biological processes including population

dynamics. ( See [6], [23] and references therein). condition (1.2) means that there is no species of immegration .
Concerning the functions f and g, we assume the following hypothesis:
(H1) f(r, s) and g(r, s) are continuously differentiable on R+ ×R+, such that

f(0, s) ≥ 0, g(r, 0) ≥ 0∀r, s ≥ 0 (1.4)

(H2) Assume further that there exists an integer ∀p ≥ 1 such that

K2i−1f (r, s) + g(r, s) ≤ C(r + s+ 1) i = 1, ..., p (1.5)

For all r, s ≥ 0 and a real m ≥ 1 sach that:

sup(|f(r, s)|, |g(r, s)|) ≤ C(r + s+ 1)m,∀r, s ≥ 0 (1.6)

The main question we want to address is the existence of global solutions for system (1.1)–(1.3). In fact the
subject of the global existence of reaction diffusion systems has received a lot of attention in the last decades and
several outstanding results have been proved by some of the major experts in the field. See [3, 5, 14].

This question has been investigated by many authors by considering special forms of the nonlinear terms f and
g.

In the trivial case where d2 = d3 = d1 − d4 = 0; nonnegative solutions exist globally in time.
In diagonal case where d2 = d3 = 0 Note that, Alikakos[1], treated the following system

{
ut − d14u = f(u, v) in R+ × Ω
vt − d44v = g(u, v) in R+ × Ω

(1.7)

with the same boundary conditions (1.2) and initial condition (1.3), where

f(u, v) = −g(u, v) = −uvσ

and gave a positive answer to the problem of the global existence of system (1.7), (1.2), (1.3) under the assumption

1 < σ < σ0 (1.8)

where

σ0 = 1 +
2

n
(1.9)

The method used in [1] is based on some Sobolev embedding theorems.
Note that the exponent σ0 given in (1.9) is exactly the critical exponents given by Fujita [7] for the parabolic

problem

{
ut = 4u+ uσ

u (x, 0) = u0 (x)
(1.10)

where u0 in (1.10) is a nonnegative. Fujita proved that if

1 < σ < σ0

then(1.10) possesses no global nonnegative solutions while if σ > σ0 , both global and nonglobal nonnegative
solutions exist, depending on the nature of the initial energy. Hollis, Martin, and Pierre [10] established global
existence of positive solutions for system (1.1)-(1.2) with the boundary conditions

λ1u+ (1− λ1)
∂u

∂η
= β1, λ2v + (1− λ2)

∂v

∂η
= β2on R+ × ∂Ω
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where

0 ≺ λ1, λ2 ≺ 1 or λ1 = λ2 = 1 and β1 � 0, β2 � 0

or

λ1 = λ2 = β1 = β2 = 0

under the conditions f(r, s) + g(r, s) ≤ C(r, s)(r + s+ 1); ∀r, s � 0, i = 1, ..., p
In [20] Masuda obtained a global existence result for a large class of the parameter σ. In fact, by using some

Lp estimates, he showed that the solution of problem (1.1)–(1.3) exists globally in time if σ > 1.
The same result in [20] was obtained by Hollis et al [19] by exploiting the duality arguments on Lp techniques,

allowing to derive the uniform boundeness of the solution.
Following Masuda’s approach, Haraux and Youkana [9] established a global existence result of system (1.1)–(1.3)

for a large class of the function f and g. More precisely they showed that for

f(u, v) = −g(u, v) = −uΦ(v) (1.11)

the problem (1.1)–(1.3) admits a global solution provided that the following condition holds:

lim
(v→+∞)

log (1 + Φ (v))

v
= 0

In the general case, that is to say for

f(u, v) = −g(u, v) (1.12)

the positivity of the function g(u, v) together with the maximum principle of the heat operator give the following
uniform estimate of the solution in L∞(Ω)

‖u(t)‖∞ ≤ ‖u0(t)‖∞∀t ∈ [0, Tmax[

Where Tmax is the maximal time of existence. See Pazy [24] for more details.Based on the Lyapunov functional
method and for f and g satisfying (1.12), Kouachi [12] proved that the solution of problem (1.1)–(1.3) exists globally
in time if

lim
(v→+∞)

log(1 + f(u, v))

v
≺ 8αβ

n(α− β)2‖u0‖∞

Moumeni and Salah Derradji [21] have established the existence of global solution using an approach that
involves the Lyapunov’s functional for the system (1.1)–(1.3) where the functions f and g are assumed to satisfy
the condition f (r, s) + g(r, s) ≤ C(r + s+ 1) .

If d1 6= d4 , an important particular case is that when f ≤ 0, which means that the first substance is absorbed
by the reaction, in this case, the problem of the global existence of system (1.7) reduces to obtaining a uniform
estimate for v, since by the maximal principle we have u(x, t) ≤ ‖u0‖∞.

Here the global existence when d1 � d4 has been treated by Kanel and Kirane [12] for a bounded domain and
by Martin and Pierre [14] for whole space Rn.

Still in the case d1 6= d4 , but without assuming d1 � d4 , the answer is again positive to the problem of the
global existence of system (1.7) under condition (1.13) and a polynomial growth assumption on g:

g(u, v) ≤ C(u+ v + 1)γ ,for allu, v ≥ 0 and some γ ≥ 1,see [10] for more details.
If the diffusion coefficients are the same, that is, if d1 = d4, then system (1.7) has a global solution under the

condition

f(u, v) + g(u, v) ≤ 0 (1.13)

,which is known as the mass dissipative structure condition. Indeed if
d1 = d4,then the solution (u, v) of (1.7) satisfies (by summing up the two equations in (1.7))
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∂(u+ v)

∂t
− d1(u+ v) = f + g ≤ 0

Then the maximal principle implies

0 ≤ u+ v ≤ ‖u0‖∞ + ‖v0‖∞

Therefore, the global existence follows.
In tridiagonal case where d3 > 0 and d2 = 0, Moumeni and Salah Derradji [22] have established the existence of

global solution of the problem (1.1)–(1.3) using the Lyapunov method combined with some Lp estimates.
For d3 > 0 and d2 � 0 In [12] J. I. Kanel and M. Kirane proved the global existence of solutions for a strongly

coupled reaction-diffusion system with homogeneous Neumann boundary conditions and

f(u, v) = −g(u, v) = uvm,m � 0

m is an odd integer, Later they improved their results in [13] where they obtained the global existence with

f(u, v) = −g(u, v) = uF (v)

On the same direction, S. Kouachi [17] has proved the global existence of solutions for two-component reaction-
diffusion systems with a general full matrix of diffusion coefficients, nonhomogeneous boundary conditions and
polynomial growth conditions on the nonlinear terms and he obtained in [18] the global existence of solutions for
the same system with homogeneous Neumann boundary conditions and

g(u, v) = ρF (u, v), f(u, v) = −σF (u, v)ρ � 0 , σ � 0

B. Rebiai and S. Benachour[25]treat the case of a general full matrix of diffusion coefficients with the homoge-
neous boundary conditions with nonlinearities of exponentiel growth .

finally in[4] K. Boukerrioua generalize a result obtained in [22]. Our techniques are based on invariant regions
and Lyapunov functional methods.

In the present work we consider problem (1.1)–(1.3) with d2 > 0 and d3 > 0 , where the function f and g are
assumed to satisfy the condition (1.6), and by adopting the Lyapunov method combined with some Lp estimates
we establish a global existence result of the solution .

The content of this paper is as follows. In section 2, we introduce some notations and give a local existence
result. Our main result is stated in section 3.

2. Local existence

Throughout this work, we denote by‖.‖p, p ∈ [1;+∞)the norm in Lp and ‖.‖∞ the norm in C(Ω) or L∞, respectively,

defined by ‖u‖p =
∫
Ω
|u|p dx

1
p and ‖u‖∞ = esssup

x∈Ω
|u(x)|

The study of local existence and uniqueness of solutions (u; v) of (1.1)-(1.3) follows from the basic existence
theory for parabolic semi linear equations (see, e.g., [2], [10], [24] and [27]). As a consequence, for any initial data in
L∞there exists a Tmax ∈ (0;+∞] such that (1.1)-(1.3) has a unique classical solution on (0, Tmax[×Ω . Furthermore,

if Tmax ≺ ∞ then limt→Tmax
{‖u(t, .)‖∞ , ‖v(t, .)‖∞} = +∞

Therefore, if there exists a positive constant C such that
‖u(t, .)‖∞ + ‖v(t, .)‖∞ � C ∀t ∈ [0, Tmax) then Tmax = +∞
Remark2.1
Under condition (H1), it follows from the invariant region method that system (1.1)–(1.3) preserves positivity.

In other words, if the initial data u0 and v0 in (1.3) are nonnegative, then the functions u and v of the corresponding
solution of (1.1)–(1.3) are also nonnegative on ]0, Tmax[×Ω. See [10].

3. Statement of the main results

3.1. Existence of global solutions

In this section, we state and prove our global existence result of system (1.1)–(1.3). Our main theorem reads as
follows.
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Theorem3.1

Let p � mn
2 . Assume that condition (H2) are satisfied. Then the solution (u(t, .), v(t, .)) of (1.1)–(1.3) with

initial positive condition in L∞ (Ω) exists globally in time.

We note that to prove Theorem 3.1 it is sufficient to derive a uniform estimate of sup(‖f(u, v)‖q , ‖g(u, v)‖q) for
some q > n/2. (See [10] for more details).

The following lemma is a useful tool in the proof of the Theorem 3.1.
Lemma3.1
Let (u(t, .), v(t, .)) be the solution of (1.1)–(1.3) and let L(t) =

∫
Ω

∑p
i=0 C

i
pK

i2uivp−idx wih p a positive integer

and K is a serie of positive numbers such that K � max( d1+d4

2 1√d1d4
, d2+d3

2 1√d3d2
)

then the functional L is uniformly bounded on the interval [0, T ∗] T ∗ � Tmax

Proof
Differentiating L with respect to t yields

L′(t) =

∫
Ω

[
p∑

i=1

(iCi
pK

i2ui−1vp−i)ut +

p−1∑
i=0

((p− i)Ci
pK

i2uivp−i−1)vt

]
dx

=

∫
Ω

p∑
i=1

(iCi
pK

i2ui−1vp−i)(d14u+ d24v + f(u, v))dx+

∫
Ω

p−1∑
i=0

((p− i)Ci
pK

i2uivp−i−1)(d34u+ d44v + g(u, v))dx

A simple computation leads

L′(t) =

∫
Ω

p∑
i=1

(iCi
pK

i2ui−1vp−i)(d14u+ d24v + f(u, v))dx+

∫
Ω

p∑
i=1

((p− i+ 1)Ci−1
p K(i−1)2ui−1vp−i)(d34u+ d44v + g(u, v))dx

From the above equality, it follows that

L′(t) =

∫
Ω

p∑
i=1

d1iC
i
pK

i2ui−1vp−i4udx+

∫
Ω

p∑
i=1

d4(p− i+ 1)Ci−1
p K(i−1)2ui−1vp−i4vdx

+

∫
Ω

p∑
i=1

d2iC
i
pK

i2ui−1vp−i4vdx+

∫
Ω

p∑
i=1

d3(p− i+ 1)Ci−1
p K(i−1)2ui−1vp−i4udx

+

∫
Ω

p∑
i=1

iCi
pK

i2ui−1vp−if(u, v)dx+

∫
Ω

p∑
i=1

(p− i+ 1)Ci−1
p K(i−1)2ui−1vp−ig(u, v)dx

I + J +H

By a simple use of Green’s formula we have:

I = −
∫
Ω

(
A |∇u|2 +B∇u∇v + C |∇v|2

)
dx (3.1)

where:

A =

p∑
i=2

d1i (i− 1)Ci
pK

i2ui−2vp−i
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B =

p−1∑
i=1

d1i (p− i)Ci
pK

i2ui−1vp−i−1 +

p∑
i=2

d4 (i− 1) (p− i+ 1)Ci−1
p K(i−1)2ui−2vp−i

C =

p−1∑
i=1

d4 (p− i) (p− i+ 1)Ci−1
p K(i−1)2ui−1vp−i−1

Using the fact that :

iCi
p = (p− i+ 1)Ci−1

p = pCi−1
p−1 ∀i = 1, ..., p (3.2)

and also since

i(i− 1)Ci+1
p = i(p− i)Ci

p = (p− i) (p− i+ 1)Ci−1
p = p(p− 1)Ci−2

p−2 (3.3)

we get

A =

p∑
i=2

d1p (p− 1)Ci−2
p−2K

i2ui−2vp−i

B =

p−1∑
i=1

d1p (p− 1)Ci−2
p−2K

i2ui−1vp−i−1 +

p∑
i=2

d4p(p− 1)Ci−2
p−2K

(i−1)2ui−2vp−i

= B1 +B2

and

C =

p−1∑
i=1

d4p(p− 1)Ci−1
p−2K

(i−1)2ui−1vp−i−1

Putting :j = i− 2 ,we have :

A =

p−2∑
j=0

d1p (p− 1)Cj
p−2K

(j+2)2ujvp−j−2

B2 =

p−2∑
j=0

d4p(p− 1)Cj
p−2K

(j+1)2ujvp−j−2

and Putting :j = i− 1 ,we get :

B1 =

p−2∑
j=0

d1p (p− 1)Cj
p−2K

(j+1)2ujvp−j−2

C =

p−2∑
j=0

d4p(p− 1)Cj
p−2K

j2ujvp−j−2

Then :

I = −p(p− 1)

p−2∑
j=0

Cj
p−2

∫
Ω

ujvp−j−2 ×Ψ(∇u,∇v)dx (3.4)
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where

Ψ(∇u,∇v) = d1K
(j+2)2 |∇u|2 + (d1 + d4)K

(j+1)2∇u∇v + d4K
j2 |∇v|2

The quadratic forms are positive since :

((d1 + d4)K
(j+1)2)2 − 4d1d4K

j2K(j+2)2 � 0 j = 0, ..., p− 2 (3.5)

Using the relation K � max( d1+d4

2 1√d1d4
, d2+d3

2 1√d3d2
)

Then

I � 0 (3.6)

By a simple use of Green’s formula we have:

J = −
∫
Ω

(
D |∇v|2 + E∇v∇u+ F |∇u|2

)
dx (3.7)

where:

D =

p−1∑
i=1

d2i (p− i)Ci
pK

i2ui−1vp−i−1

E =

p∑
i=2

d2i (i− 1)Ci
pK

i2ui−2vp−i +

p−1∑
i=1

d3 (p− i) (p− i+ 1)Ci−1
p K(i−1)2ui−1vp−i−1

F =

p∑
i=2

d3 (i− 1) (p− i+ 1)Ci−1
p K(i−1)2ui−2vp−i

Using the relation (3.2) we get

D =

p−1∑
i=1

d2p (p− 1)Ci−2
p−2K

i2ui−1vp−i−1

E =

p∑
i=2

d2p (p− 1)Ci−2
p−2K

i2ui−2vp−i +

p−1∑
i=1

d3p(p− 1)Ci−1
p−2K

(i−1)2ui−1vp−i−1

E1 + E2

and

F =

p∑
i=2

d3p(p− 1)Ci−2
p−2K

(i−1)2ui−2vp−i

putting :j = i− 1 ,we have :

D =

p−2∑
j=0

d2p (p− 1)Cj
p−2K

(j+1)2ujvp−j−2

E2 =

p−2∑
j=0

d3p(p− 1)Cj
p−2K

j2ujvp−j−2

and putting :j = i− 2 ,we get :
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E1 =

p−2∑
j=0

d2p (p− 1)Cj
p−2K

(j+2)2ujvp−j−2

F =

p−2∑
j=0

d3p(p− 1)Cj
p−2K

(j+1)2ujvp−j−2

Then :

J = −p(p− 1)

p−2∑
j=0

Cj
p−2

∫
Ω

ujvp−j−2 × Φ(∇v,∇u) dx (3.8)

where

Φ (∇v,∇u) = d2K
(j+1)2 |∇v|2 + (d2K

(j+2)2 + d3K
j2)∇v∇u+ d3K

(j+1)2 |∇u|2

The quadratic forms are positive since :

((d2K
(j+2)2 + d3K

j2))2 − 4d2d3K
(j+1)2K(j+1)2 � 0 j = 0, ..., p− 2 (3.9)

Using the relation K � max( d1+d4

2 1√d1d4
, d2+d3

2 1√d3d2
)

Then

J � 0 (3.10)

Using the relation (3.2), in the third integral, yields :

H =

∫
Ω

[
p

p∑
i=1

(
Ki2f(u, v) +K(i−1)2g(u, v)

)
Ci−1

p−1u
i−1vp−i

]
dx

Using the relation(1.5) we deduce

H � c3

∫
Ω

[
p∑

i=1

(u+ v + 1)Ci−1
p−1u

i−1vp−i

]
dx

To prove that the functional L is uniformly bounded on the interval[0, T ∗]
first we write

L′(t) � c3

∫
Ω

[
p∑

i=1

Ci−1
p−1u

ivp−i +

p∑
i=1

Ci−1
p−1u

i−1vp−i+1 +

p∑
i=1

Ci−1
p−1u

i−1vp−i

]
dx

L′(t) � c3

∫
Ω

[
p∑

i=1

Ci−1
p−1u

ivp−i +

p−1∑
i=0

Ci
p−1u

ivp−i +

p−1∑
i=0

Ci
p−1u

ivp−i−1

]
dx

L′(t) � c3

∫
Ω

[
p∑

i=0

Ci
pu

ivp−i +

p−1∑
i=0

Ci
p−1u

ivp−i−1

]
dx

Using the fact that

p−1∑
i=0

Ci
p−1u

ivp−i−1 = (u+ v)
p−1
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Therefore, the last inequality can be written as

L′(t) � c1(p)L(t) + c3

∫
Ω

(u+ v)
p−1

Applying Hôlder’s inequality to the second term in the right hand side of
the above inequality, we obtain

L′(t) � c1(p)L(t) + c3(mesΩ)
1
p (

∫
Ω

(u+ v)
p
dx)

(p−1)
p )

Since the following inequality holds,

(u+ v)
p
=

p∑
i=0

Ci
pu

ivp−i �
sup0�i�p C

i
p

min0�i�p Ci
pK

i2

p∑
i=0

Ci
pK

i2uivp−i

Then, we have

L′(t) � c1(p)L(t) + c3(mesΩ)
1
p (

sup0�i�p C
i
p

min0�i�p Ci
pK

i2
)

(p−1)
p (L(t))

(p−1)
p ∀t ≺ Tmax

Hence,L(t) the functional satisfies the following differential inequality:

L′(t) � c1(p)L(t) + c2(p)(L(t))
(p−1)

p ∀t ≺ Tmax

where

c2(p) = c3(mesΩ)
1
p (

sup0�i�p C
i
p

min0�i�p Ci
pK

i2
)

(p−1)
p

which gives us, by a simple integration

(L(t))
1
p �

[
(L(0))

1
p +

c′2(p)

c′1(p)

]
exp(c′1(p)t)−

c′2(p)

c′1(p)
(3.11)

where

c′1(p) =
c1(p)

p
c′2(p) =

c2(p)

p

By using the inequality

L(t) =

∫
Ω

(

p∑
i=0

Ci
pK

i2uivp−i)dx �
∫
Ω

(Cp
pK

p2

up + C0
pK

02vp)dx

it follows that

L(t) � min(C0
pK

02 , Cp
pK

p2

) sup(

∫
Ω

updx,

∫
Ω

vpdx)

Hence,

(L(t))
1
p � [min(C0

pK
02 , Cp

pK
p2

)]
1
p sup((

∫
Ω

updx)
1
p , (

∫
Ω

vpdx)
1
p )

And therefore,

sup(‖u(t, .)‖p , ‖v(t, .)‖p) �
(L(t))

1
p

[min(C0
pK

02 , Cp
pKp2)]

1
p

∀t ≺ Tmax (3.12)
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With (3.11) and (3.12) we obtain :

sup(‖u(t, .)‖p , ‖v(t, .)‖p) � c(t) ∀t ≺ Tmax (3.13)

where

c(t) =
1

[min(C0
pK

02 , Cp
pKp2)]

1
p

{
[
(L(0))

1
p +

c′2(p)

c′1(p)

]
exp(c′1(p)t)−

c′2(p)

c′1(p)
}

The proof of Lemma 3.1 is complete.
Proof of theorem3.1
From (1.6)we have

sup(|f(u, v)| , |g(u, v)|) � c2 (u+ v + 1)
m

Then, it follows that

sup(

∫
Ω

|f(u, v)|
p
m dx,

∫
Ω

|g(u, v)|
p
m dx � c

p
m
2

∫
Ω

(u+ v + 1)
p
dx

which implies :

sup(‖f(u, v)‖
p
m
p
m
, ‖g(u, v)‖

p
m
p
m
) � c

p
m
2

∫
Ω

(u+ v + 1)
p
dx (3.14)

On the other hand, we have∫
Ω

(u+ v + 1)
p
dx =

∫ k

Ω

p∑
k=0

Ck
p (u+ v)

k
dx

∫
Ω

(u+ v + 1)
p
dx =

∫
Ω

[1 + (u+ v)
p
]dx+

p−1∑
k=1

Ck
p

∫
Ω

(u+ v)
k

An application of Hôlder’s inequality leads

p−1∑
k=1

Ck
p

∫
Ω

(u+ v)
k �

p−1∑
k=1

Ck
p

[∫
Ω

(
1

p
(p−k) dx

) (p−k)
p

(∫
Ω

(u+ v)pdx

) k
p

]
Hence∫

Ω

(u+ v + 1)
p
dx � mes(Ω) +

∫
Ω

(u+ v)
p
dx (1)

+

p−1∑
k=1

Ck
p

[
(mes(Ω))

(p−k)
p

(∫
Ω

(u+ v)
p
dx

) k
p

]
using (3.13) we get:

(

∫
Ω

(u+ v)
p
dx)

1
p = ‖u(t, .) + v(t, .)‖p � ‖u(t, .)‖p + ‖v(t, .)‖p � 2c(t)

and the inequality (3.15) can be written as follows∫
Ω

(u+ v + 1)
p
dx � mes(Ω) + 2p(c(t))p +

p−1∑
k=1

Ck
p [(mes(Ω))

(p−k)
p (2c(t))k

�
p∑

k=0

Ck
p [(mes(Ω))

(p−k)
p (2c(t))k
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Therefore

sup((‖f(u, v)‖
p
m
p
m
, ‖g(u, v)‖

p
m
p
m
) � c

p
m

p∑
k=0

Ck
p [(mes(Ω))

(p−k)
p (2c(t))k (3.16)

which gives that

sup(‖f(u, v)‖ p
m
, ‖g(u, v)‖ p

m
) � cp,m(t) ∀t ≺ Tmax (3.17)

where

cp,m(t) = c[

p∑
k=0

2kCk
p [(mes(Ω))

(p−k)
p (c(t))k]

p
m

Remark3.1
From both Lemma 3.1 and Theorem 3.1, we have obtained an uniform estimate of sup(‖f(u, v)‖q , ‖g(u, v)‖q)
with q = p/m > n/2. By the preliminary remarks, we conclude that the solution of the given problem exists

globally in time.
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