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Abstract

In this paper we define some new sequence spaces and give some topological properties of the sequence spaces
3 (A" s,p) and A3 (A™, s, p) and investigate some inclusion relations.
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1. Introduction

Throughout w, x and A denote the classes of all, gai and analytic scalar valued single sequences, respectively.

We write w? for the set of all complex triple sequences (Z,nk), Where m, n, k € N, the set of positive integers. Then,
w? is a linear space under the coordinate wise addition and scalar multiplication.
Let (nk) be a triple sequence of real or complex numbers. Then the series Y

kel Tmnk is called a triple

series. The triple series Z;’:,m i—1 Tmnk is said to be convergent if and only if the triple sequence (Smnk) is convergent,
where

m,n,k
Smnk = Z xijq(m,n, k=1,2,3, )

i,7,q=1

A sequence & = (Zynk) is said to be triple analytic if

1
Supm,n,k |x7nnk| mEntk < 00.

The vector space of all triple analytic sequences are usually denoted by A%. A sequence x = (Z,,nx) is called
triple entire sequence if

1
mEntk — 0 as m,n, k — oo.

|xmnk

The vector space of all triple entire sequences are usually denoted by I'®. The space A3 and I'® is a metric space
with the metric

d(x,y) = Supm,n,k {|mmnk - ymnk| eranrk m,n, k : 17 2u 37 } 9 (1)
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for allz = {@nr} andy = {Ymnr} in T3, Let ¢ = {finite sequences} .
Consider a triple sequence = = (Zynnk). The (m,n, k)" section z[™™*] of the sequence is defined by ™™k =
i kox”qél]q for all m,n,k € N,

0 0 .0 O

0 0 .0 O
(Smnk =

0 0 1 0

0 0 0 0

with 1 in the (m,n, k)*" position and zero otherwise.
1
A sequence = (Tmnk) is called triple gai sequence if ((m + n + k)! |zmnk]) ™ * — 0 as m,n, k — oco. The
triple gai sequences will be denoted by 3.
Consider a triple sequence & = (Zmnk). The (m,n, k)" section z[™™*] of the sequence is defined by !k =

m,n,k o . (ST 1 i
D i famoTijqSijq for all m,m, k € N; where ;4 denotes the triple sequence whose only non zero term is a

in the (i, j, k)th place for each i, j,k € N.

An FK-space(or a metric space) X is said to have AK property if (Sy,nk) is a Schauder basis for X, or equivalently
gkl 5 g,

An FDK-space is a triple sequence space endowed with a complete metrizable; locally convex topology under
which the coordinate mappings are continuous.

If X is a sequence space, we give the following definitions:

(1) X/ is continuous dual of X;

i) X = {a = (@mnk) : Zﬁ,n,k:l |@mnkTmnk| < 00, for each x € X} :

1
(i+5+k)!

iii) XP = { = (amnk) : ng’n b1 @mnkTmnk 5 convergent, for each x € X} ;

< oo, for each xeX}

v) Let X be an FK-space D d),thean = {f(\smnk) feX };

(i
(
(1) X7 = {a = (@mn) 5 supmnz1 [ 00N G
(
( 1/m+n+k

vi) X0 = { = (Gmnk) * SUPm.n.k |CmnkTmnk| < oo, for each x € X} :

X X8 X7 are called o — (or Kéthe-Toeplitz) dual of X, 8 — (or generalized-Kéthe-Toeplitz) dual of X, y— dual
of X, § —dualof X respectively. X is defined by Gupta and Kamptan [10] . It is clear that X* ¢ X? and X* C X",
but X* C X7 does not hold.

2. Definitions and preliminaries

1
A sequence © = (Tnk) is said to be triple analytic if supmnk |Tmnk|™T"7F < oo. The vector space of all
triple analytic sequences is usually denoted by A3. A sequence # = (Z,uni) is called triple entire sequence if

|Trmnk| FEFE 3 () as m,n, k — oo. The vector space of triple entire sequences is usually denoted by I'*. A sequence

1
2z = (Tmnk) is called triple gai sequence if ((m + n + k)! |Zmnk| )™ 7% — 0 as m,n, k — oo. The vector space of
triple gai sequences is usually denoted by x2. The space x? is a metric space with the metric

d(z,y) = SUpPm.n.k {((m +n+ k) Tmnk — ymnk|)’"+;+"‘ m,n,k:1,2,3, } (2)

for all = {@ymnr} and y = {Ymnk tin x>.

Throughout the article w3, x? (A),A? (A) denote the spaces of all, triple gai difference sequence spaces and
triple analytic difference sequence spaces respectively.

For a triple sequence = € w?, we define the sets

2 (A) = {x cwd: (m+n+ k) | Az )™ = 0asm,n, k — oo}

A3 (A) = {x € w3 SUPm ok |Axmnk\1/m+n+k < oo} .
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The space A% (A) is a metric space with the metric
— 1/m+n —
d(m,y) = SUPm,n.k {|Axmnk - Aymnk| cmynk=1,2,--- }

for all # = (Tpnk) and y = (Ymnk) in A3 (A).
The space x> (A) is a metric space with the metric

d(z,y) = Supmnk {((m + 14+ k) ATk — Aymnk|)1/m+"+k mynk=1,2,--- }

for all 2 = (Tpnk) and ¥ = (Ymnr) in x> (A).
Now we define the following sequence spaces: Let s > 0 be real number and v = (V) be non-zero real number
sequence, then

K (A7 5,) = {o = (@mr) € 0 (mak)™ ((m+ 1+ AT 2e) ™) 500 (monsk =5 00) 5 > 0}

Pmnk

A3 (A" s5,p) = {:c = (Tpnk) € W SUPmnk (Mmnk) ™" (|ATmmnk|1/m+n'+k) < 00,8 > 0}
Where Agirmnk = (’Umnkxmnk) ) A'u‘rmnk: = UmnTmn " Umn+1Tmn+1 " VUmn+2Tmn+2 " Um+1nTm+1n —"VUm+1n+1Tm+1n+1—
Um+1n+2Tm+1n+2 — Um+2nTm+2n — Um+2n+1TLm+2n+1 — Um+2n+2Lm+2n+2
A:;nxmn = AA:;n_lxrnn = A;n_lxmn_ALn_lxmn—i-l_A»Um_1$mn+2_A;n_lxm-&-ln_A:}n_lxm-&-ln—i-l_Avm_lxm+1n+2_
AT?lxm+2n - AT71$7n+2n+1 - ATilxm+2n+2
We get the following sequence spaces from the above sequence spaces by choosing some special p, m, s and v.
Ifs=0,m=1and

O =
O =
o -
O =
e e

with 1 upto (m,n, k)" position and zero otherwise and p,,nx = 1 for all m,n, k. We have
X (A) = {x = (Tmnk) : Az € X3},

A% (A) = {2 = (Tmnr) : Az € A®}.

If s = 0 and pypr = 1 for all m,n, k we have the following sequence spaces

P (A™) = {a: = (Tynk) €EW* 1 Az € x3} ,

A (AT) = {2 = (Tmnk) € W : AT'z € A®}.

If s=0,m =0 and

1 0.

11 .1
11 .1 1 0.

O =
O =
o -
O =
()

with 1 upto (m,n, k)" position and zero otherwise. We have the following sequence spaces

Pmnk/m+n+k

X (p) = {x = (k) € WP (M +n+ k) Zpne]) = 0,(m,n, k — oo)}

A (p) = {f = (ﬂfmnk) € w? SUPm, n.k |xmnk|l’mnk/m+n+k < oo}
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If m=0 and

1
1

e

1 ..
1 .11

O =
O =
o
(@)

with 1 upto (m,n, k)** position and zero otherwise. We have the following sequence spaces

3 _ _ 3. k —S k | pnznk/m+n+k’ k >
X° (p,8) =32 = (Tmnk) € w° : (mnk) " (M +n+ k) Tmnkl|) —0,(m,n,k — 00),s>0¢,
A (p,s) = {x = (Tmnk) € WP ¢ sUP g (MNE) ™ |2 < 00,5 > 0} ;

If s=0,m=0and ppnr =1

1 1 ..1 1 O..
1 1 1 0.
v=|" for all m,n, k
1 1 ..1 1 O..
0 0 .0 0 O.

with 1 upto (m,n, k)" position and zero otherwise. We have x* and A3.

If s = 0 we have x3 (A™,p) and A3 (A™, p)

For a subspace 1 of a linear space is said to be sequence algebra if x,y € ¥ implies that = -y = (TmnkYmnk) € ¥,
see Kamptan and Gupta [10].

A sequence F is said to be solid (or normal) if (A\pnkZmnk) € E, whenever (zp,ni) € E for all sequences of
scalars (Amng = k) with |Apnk] < 1.

If X is a linear space over the field C, then a paranorm on X is a function g : ¢g() = 0 where § =
(0,0,0,--),9(—x) =g (z),9(x+vy) <g(x)+g(y) and |A = Xo| = 0,9 (x — x¢) imply g (Ax — Agzo) — 0, where
A Ao € C and z,z0 € X. A paranormed space is a linear space X with a paranorm ¢ and is written (X, g).

In this paper, we define some new sequence spaces and give some topological properties of the sequence spaces
3 (A™ s,p) and A3 (A™, s, p) and investigate some inclusion relations.

3. Main results

Theorem 3.1. The following statements are hold
(i)x3 (A™,s) C A3 (A™,s) and the inclusion is strict.
(11)X (AT, s,p) C X (AZ,”‘H, s,p) does not hold in general for any X = x> and A3.

Proof. (i) If we choose s =0,

1 0 ..1 0 O.. 1 1 ..1 1 0.

1 0 ..1 0 O.. 1 1 ..1 1 0
=1 and v =

1 0 ..1 0 O 1 1 .1 1 0

00 .0 0 O 00 .0 0 O

Hence x € A3 (A™,s), but = ¢ x* (A™, s)
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(ii) Let v = | ° , 0= (Pmnk) and & = (Tmnk) given by

Prmnk = 1, ((m +n+k)! \xmnk|)1/m+”+k = m?n2k? if m,n, k is odd

Pmnk = 27 ((m +n+ k)' ‘xmnk|)1/m+n+k

0 otherwise

= mnk if m,n, k if even

Since for m,n, k> 1, (m+n + k)! ’Agxmnk|)p’""k/m+n+k = ((m 4 1+ k) | Tge | )P/ MR = 222

m =373k ((m+n + k) |A2$mnk|)pmnk/m+n+k =m3n 3k 3m*n?k? = m~In"k~t = 0 (m,n,k — o) and
for j >1

((6)! [Au25,05) P2/ = (65% + 652 + 1), (67) 7> ((61)! | Auaja05 )72/ % > 6 = 00 (j = o).

Now, we can see that = € x* (A9,3,p) and = ¢ A% (A9, 3,p) , which imply that X (A7, s,p) is not a subset of
X (Am*1,s,p) . This completes the proof. O

Theorem 3.2. X3 (A™,s,p) and A3 (A, s,p) are linear spaces over the complex field C.

Proof. Suppose that M = max (1, Supm n k>NPmnk) SINCE Prmnk/M < 1, we have for all m,n, k

AT @t Yt (AT P77 AT P74 (3)
and for all A € C

AP M < Maa (1, ) (4)

Now the linearity follows from (3) and (4). This completes the proof. O

Pmn
Theorem 3.3. Let N1 = min {no L SUPmn k>n, (MNk) ™" (((m+ n+k)! \A;”:cmnk|)1/m+"+k) " < oo}, Ny, =

min {ng : SUPm.n k>nePmnk < 00}, N3 = min{ng : supm n.k>n, < 00} and N = maz {Ny, Na, N3} x> (A™ s, p) is
a paranormed space with

j
g(x) = Z (m+n+ k) Zmnk| + EMN S 00 SUDm k>N (mnk)_S/M ((m+n+k)! \Avmzmnu)pm"’“/M (5)

if and only if > 0, where g = lMN_ooin i n k> NPmnk ond M = maz (1, SUDm n k>N Pmnk)

Proof. (i)Necessity: Let x®(A™, s,p)be a paranormed space with (5) and suppose that p = 0. Then a =
iNfmnk>NPmnk = 0 for all N € N and hence we obtain g (Az) = Zfﬂ:l Zi:l Sy (m+n+ k) Tk +
LMy — o0 SUPm n kN (mnk) ™ AP™*™M = 1 for all A € (0,1], where 2 = a € X3 (A™, s,p). whence A — 0
does not imply Az — 6, when z is fixed. But this contradicts to (5) to be a paranorm.

Sufficiency: Let p > 0. It is trivial that g (#) = 0,¢9(—z) = ¢g(x) and g(z +y) < g(z) + g (y). Since p > 0
there exists a positive number 5 such that p,,,r > «a, 8 for sufficiently large positive integer m,n, k. Hence for any

A € C, we may write |\|"""* < max <|)\|M LA |)\\5) for sufficiently large positive integers m, n, k > N. Therefore,
we obtain that g (Az) < max (\)\| , |)\|Q/M , \)\|'8/M) g (z) using this, one can prove that Az — 6, whenever z is fixed

and A — 0, (or) A — 0 and  — 6, or A is fixed and x — 0. This completes the proof. O

Theorem 3.4. Let 0 < ponk < Gmnk < 1 for allm,n, k € N, then (i)A3 (A™, s,p) C A3 (A™,s,q) (ii)x> (A™, s,p) C
3 m
X (A 8,9)
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Proof. (i): Let x € A3 (A™, s,p). Then there exists a constant M > 1 such that
(mnk) ™ | AT 2 |97 MR < M for all my,n, k

and so

(mnk) ™% |AT Z e T ™ < M for all myn, k

suppose that z¢ € A3 (A™, s,q) and * — x € A3 (A™, s,p). Then for every o < € < 1, there exist N such that for
all m,n, k

(mnk)™" |AT (x(i) —x ) PR <eforali>N
v mnk mnk
Now,
s (%) Gmnk/mA+n+k s (i) DPmnk/m+n+k )
(mnk)™" |AT (xmnk - xmnk) < (mnk)™" |AT? (mmnk - xmnk) < e (for all i > N)

Therefore z € A3 (A™, s,q) . This completes the proof.

v 9

(ii): It is easy. Therefore omit the proof. O

Proposition 3.5. For X = x® and A3, then we obtain (i)X (A™,s,p) is not sequence algebra, in general (ii)
X (A7, s,p) is not solid, in general.

Proof. (i) This result is clear from the following example : O

Example 3.6. (1) Let ppnk = 1, (m +n + k) vgne = m, (m+n+ k)Zpmnr = (mnk)2(m+n+k) and

(m~+n+ )Wk = (mnk)Q(m+"+k) for all m,n,k. Then we have x,y € x> (A,0,p) but x,y ¢ x> (A,0,p) with
m=1 and s =0.

Proof. (ii) This result is clear from the following example O

11 .1 1 0.
11 .1 1 0.

Example 3.7. (2) Consider Tpmpr = | € X2 (A" s,p) Let Prnk = 1, Qi = (—1)m+"+k

0...
0

)

11 .1 1
0 0 .0 O

then cmnkTmnk & X°> (AT, s,p) withm =1 and s = 0.
The following proposition’s proof is a routine verification.

Proposition 3.8. For X = x3 and A3, then we obtain
(i) s1 < sg implies X (A", s1,p) C X (A}, s2,D),
(7i) Let 0 < infpmnk < Pmnk < 1 then X (AT, s,p) C X (A}, s),
(11i) Let 1 < pmnk < SUPmnkPmnk < 00, then X (AT, s) C X (A", s,p),

(iv) Let 0 < prmnk < Gmnk and (qm—""> be bounded, then X (A", s,q) C X (A", s,p).

Pmnk v ?
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