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Abstract

In this paper, we investigate the common values and growth relationship between two algebroid functions and prove
several growth theorems involving common values. Moreover, on this basis, we study uniqueness theory of algebroid
function and prove several elegant uniqueness theorems.
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1. Introduction and main results

Let D be a simply connected domain in the complex plane C. An algebroid function of k-valued in D is defined as

W (z) =
{
w ∈ C;wk +A1(z)wk−1 + · · ·+Ak(z) = 0

}
, z ∈ D, (1)

where A1(z), · · · , Ak(z) are meromorphic in D. Because the set of branch points of an algebroid function W (z) is

discrete, we can cut D by a polyline that pass through all branch points to obtain a simply connected domain D̃.
Then we get k single-valued branch functions of W (z):

w1(z), w2(z), · · · , wk(z).

Thus, we can write W (z) simply as

W (z) =
{
wj(z)

}k
j=1

. (2)

and
Ψ(z, w) = wk +A1(z)wk−1 + · · ·+Ak(z)

=
(
w − w1(z)

)(
w − w2(z)

)
· · ·
(
w − wk(z)

)
= 0, z ∈ D̃.

Let W (z) and M(z) be two k-valued and s-valued non-constant algebroid functions defined by (1). Suppose that
a is an arbitrary constant or ∞. We denote by Et)(a,W ) the set of zeros of W (z) − a, whose multiplicities are

not greater than t; and denote by nt)(r,
1

W−a ) the number of the distinct points of the set Et)(a,W )
⋂
{|z| ≤ r}.
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If Et)(a,W ) = Et)(a,W ), then a is called a t-common value of W (z) and M(z). If t = ∞, then a is called a IM
common value of W (z) and M(z).

Algebroid functions are extremely important multiple-valued functions. There are lots of complex differential
equations that possess global algebroid solutions. For example, the 2-valued algebroid function w2−tan z = 0 solves
the simple first order non-linear differential equation 2ww′−w4 = 1. However, there are still many difficulties with
the study of algebroid functions because of multivalue and branch points. For instance, we can not plus two
algebroid functions like we plus two meromorphic functions.

In [6] and [7], Sun and Gao defined the addition (W ⊕M)(z) of any two algebroid functions W (z) and M(z) as
follows:

Definition 1.1 [6,7] Let W (z) and M(z) be two k-valued and s-valued algebroid functions. Then, the sum W (z)⊕
M(z) of them is defined as

(W ⊕M)(z) = {w ∈ C;

i=k,j=s∏
i=1,j=1

[w − (wi(z) +mj(z))] = 0}, z ∈ D̃′,

where D̃′ is a simply connected domain obtained by cutting D by the polyline that pass through all branch points of
W (z) and M(z); wi(z) and mj(z) are single-valued branches of W (z) and M(z), respectively.

In [6] and [7], Sun and Gao proved that the sum W (z) ⊕M(z) of a k-valued algebroid function and a s-valued
algebroid function is a ks-valued algebroid function. By using this new operation, one can study the common values
of algebroid functions in depth. For example, the authors of this paper [2, 6, 7], Cao & Yi [1], Xuan & Gao [9],
Zhang & Sun [12], Liu & Sun [5] and other researchers studied the common values by applying this new operation
and obtained numbers of uniqueness theorems for algebroid functions. For instance, In [6], Sun and Gao proved
the following theorem:

Theorem 1.2 [6] Let W (z) and M(z) be two k-valued non-constant algebroid functions defined by (1). Suppose
that a1, a2, . . . , a4k+1 are 4k + 1 distinct complex numbers. If

E2k+1)(aj ,W ) = E2k+1)(aj ,M) (j = 1, 2, . . . , 2k + 1)

and
E2k)(aj ,W ) = E2k)(aj ,M) (j = 2k + 2, . . . , 4k + 1),

then W (z) ≡M(z).

In this paper, we firstly investigate the relation of characteristic functions between any two k-valued and s-valued
algebroid functions that have 2k + 2s IM common values and we obtain

Theorem 1.3 Let W (z) and M(z) be two k-valued and s-valued non-constant algebroid functions defined by (1).
If they have 2k + 2s IM common values a1, a2, . . . , a2k+2s, then

T (r,W ) = T (r,M) + S(r,M),

T (r,M) = T (r,W ) + S(r,W ).

If k = s, then we can get the following conclusion from Theorem 1.3 immediately.

Corollary 1.4 Let W (z) and M(z) be two k-valued non-constant algebroid functions defined by (1). If they have
4k IM common values a1, a2, . . . , a4k, then

T (r,W ) = T (r,M) + S(r,M),

T (r,M) = T (r,W ) + S(r,W ).

We also investigate the relation of characteristic functions between two k-valued algebroid functions that have 2k+q
(q ≥ 1) IM common values and obtain

Theorem 1.5 Let W (z) and M(z) be two k-valued non-constant algebroid functions defined by (1). If they have
3k + 1 IM common values a1, a2, . . . , a3k+1, then

1

σk
T (r,W ) + S(r,W ) ≤ T (r,M) ≤ σkT (r,W ) + S(r,W ),

where σk = min{k, 3− 1/(k + 1)}.
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And so, we can obtain the following corollary:

Corollary 1.6 Let W (z) and M(z) be two k-valued non-constant algebroid functions defined by (1). If they have
2k + q (q ≥ 1) IM common values a1, a2, . . . , a2k+q, then

ρ(W ) = ρ(M).

where ρ(W ) denotes the order of W (z).

Furthermore, by applying these conclusions and considering the common values involved multiplicity of any two
algebroid functions, we prove an uniqueness theorem of algebroid functions as follows.

Theorem 1.7 Let W (z) and M(z) be two k-valued and s-valued non-constant algebroid functions defined by (1),
and suppose that a1, a2, . . . , a2k+2s+1 are 2k + 2s+ 1 distinct complex numbers. If

Ek+s+1)(aj ,W ) = Ek+s+1)(aj ,M) (j = 1, 2, . . . , k + s+ 1)

and
Ek+s)(aj ,W ) = Ek+s)(aj ,M) (j = k + s+ 2, . . . , 2k + 2s+ 1),

then W (z) ≡M(z).

It is clear that this theorem improves Theorem 1.2, and the following He’s uniqueness theorem [4, 8] is a corollary
of Theorem 1.7.

Corollary 1.8 [4,8] Let W (z) and M(z) be two k-valued and s-valued non-constant algebroid functions defined by
(1). If they have 2k + 2s+ 1 IM common values, then W (z) ≡M(z).

In addition, the reader who is not familiar with the other notations and terms used in this paper can refer to
[3, 4, 8, 10, 11].

2. Some lemmas

Definition 2.1 Suppose that W (z) is a non-constant k-valued algebroid function in |z| < R. Denote by S(r,W )
an arbitrary function X defined on {0 ≤ r < R} and such that:

(1) If R = +∞ and W (z) has finite order, then

X = O{log T (r,W )}+O{log r} = O{log r}

as r → +∞.
(2) If R = +∞ and W (z) has infinite order, then

X = O{log T (r,W )}+O{log r} = O{log[rT (r,W )]}

as r → +∞ outside a set E0 with finite linear measure otherwise.
(3) If R ∈ (0,+∞), then

X = O{log+ T (r,W ) + log
1

R− r
}

as r → R outside a set E0 with ∫
E0

dr

R0 − r
≤ 2,

and there must exit a point r outside E0 for which r ∈ (ρ, ρ′) provided that ρ ∈ (0, R0) and ρ′ ∈ (R0 − R0−ρ
e2 , R0).

Then we say that the function X satisfies remainder conditions for W (z) and write X = S(r,W ).

It is easy to see that

Lemma 2.2 Suppose that M(z) and W (z) are two non-constant algebroid functions and X = S(r,M). If there is
a constant c > 0 such that T (r,W ) > cT (r,M) for all r in the common domain of definitions of M(z) and W (z),
then X also satisfies the remainder conditions for W (z), that is, X = S(r,W ).
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Lemma 2.3 [7] Let W (z) and M(z) be two k-valued and s-valued non-constant algebroid functions defined by (1).
Then, the sum W (z)⊕M(z) and difference W (z)	M(z) of them are all ks-valued generalized algebroid functions,
and

T (r,W ⊕M) ≤ T (r,M) + T (r,M) + log 2,

T (r,M 	M) ≤ T (r,W ) + T (r,M) + log 2.

Lemma 2.4 Let W (z) and M(z) be two k-valued non-constant algebroid functions defined by (1). If they have
2k + q (q ≥ 1) IM common values a1, a2, . . . , a2k+q, then

(1− 2k

2k + q
)T (r,M) + S(r,M) ≤ T (r,W ) ≤ (1 +

2k

q
)T (r,M) + S(r,M).

Proof: These relation clearly hold when W (z) ≡ M(z). Thus, in the following verification, we assume that
W (z) 6= M(z). We first know from the second fundamental theorem of algebroid functions that

(2k + q − 2k)T (r,W ) ≤
2k+q∑
j=1

N(r,
1

M − aj
) + S(r,W )

=

2k+q∑
j=1

N(r,
1

M − aj
) + S(r,W )

≤ (2k + q)T (r,
1

M − aj
) + S(r,W )

By the first fundamental theorem of algebroid functions, we have

qT (r,W ) ≤ (2k + q)T (r,M) + S(r,W ).

That is,

T (r,W ) ≤ (1 +
2k

q
)T (r,M) + S(r,W ).

In a similar way, we can obtain

(1− 2k

2k + q
)T (r,M) ≤ T (r,W ) + S(r,M).

Moreover, we get from Lemma 2.2 that

S(r,M) = S(r,W ).

Combining above three relations, we obtain the Lemma 2.4.

Lemma 2.5 [7] Suppose that W (z) is a k-valued non-constant algebroid function defined by (1). Let a1, a2, . . . , ap
be p distinct complex numbers, and suppose that t1, t2, . . . , tp are p positive integers, then

(p− 2k −
p∑
j=1

1

tj + 1
)T (r,W ) <

p∑
t=1

tj
tj + 1

N tj)(r,
1

W − at
) + S(r,W ).



30 Global Journal of Mathematical Analysis

3. Proofs of theorems

Proof of Theorem 1.3: These relations clearly hold when W (z) ≡ M(z). Thus, in the verification, we may
assume that W (z) 6= M(z). We first know from the second fundamental theorem of algebroid functions that

(2k + 2s− 2k)T (r,W ) ≤
2k+2s∑
j=1

N(r,
1

W − aj
) + S(r,W )

=
1

k

2k+2s∑
j=1

[ ∫ r

0

(n(t,
1

W − aj
)− n(0,

1

W − aj
))

1

t
dt+ n(0,

1

W − aj
) log r

]
+ S(r,W )

≤ 1

k

[ ∫ r

0

(n(t,
1

W 	M
)− n(0,

1

W 	M
))

1

t
dt+ n(0,

1

W 	M
) log r

]
+ S(r,W )

= s
1

ks

[ ∫ r

0

(n(t,
1

W 	M
)− n(0,

1

W 	M
))

1

t
dt+ n(0,

1

W 	M
) log r

]
+ S(r,W )

= sN(r,
1

W 	M
) + S(r,W )

≤ sT (r,
1

W 	M
) + S(r,W )

By the first fundamental theorem of algebroid functions and Lemma 2.3, we have

2sT (r,W ) ≤ sT (r,W 	M) + S(r,W ) ≤ s[T (r,W ) + T (r,M)] + S(r,W ).

That is,

T (r,W ) ≤ T (r,M) + S(r,W ).

Then, the same procedure may be easily adapted to obtain

T (r,M) ≤ T (r,W ) + S(r,M).

Combining above two inequalities and applying Lemma 2.2, we can obtain the Theorem 1.3 immediately.

Proof of Theorem 1.5: If W (z) ≡M(z), it reaches the conclusion immediately. If not, by making the substitution
q = k + 1 in Lemma 2.4 firstly, we obtain that

(1− 2k

3k + 1
)T (r,M) + S(r,M) ≤ T (r,W ) ≤ (3− 2

k + 1
)T (r,M) + S(r,M). (3)

Then, applying a similar approach that taken in the proof of the Theorem 1.3, we have

(3k + 1− 2k)T (r,W ) ≤
3k+1∑
j=1

N(r,
1

W − aj
) + S(r,W )

≤ kT (r,W 	M) + S(r,W ).

Thus

T (r,W ) ≤ kT (r,M) + S(r,W ). (4)

Also, we can obtain

T (r,M) ≤ kT (r,W ) + S(r,M) (5)

in a similar way. Finally, we get the Theorem 1.5 from the three inequalities (3), (4), and (5) and Lemma 2.2.
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Proof of Theorem 1.7: If W (z) 6≡M(z), then Lemma 2.5 tells us

(2k + 2s+ 1− 2k − k + s+ 1

k + s+ 2
− k + s

k + s+ 1
)T (r,W )

≤
k+s+1∑
j=1

k + s+ 1

k + s+ 2
Nk+s+1)(r,

1

W − aj
) +

2k+2s+1∑
j=k+s+2

k + s

k + s+ 1
Nk+s)(r,

1

W − aj
) + S(r,W )

≤ k + s+ 1

k + s+ 2

[ k+s+1∑
j=1

Nk+s+1)(r,
1

W − aj
) +

2k+2s+1∑
j=k+s+2

Nk+s)(r,
1

W − aj
)
]

+ S(r,W )

≤ k + s+ 1

k + s+ 2
· sN(r,

1

W 	M
) + S(r,W )

≤ sT (r,
1

W 	M
) + S(r,W )

By applying the first fundamental theorem of algebroid functions and Lemma 2.3, we can obtain

(2s− 1− 1

k + s+ 2
− 1

k + s+ 1
)T (r,W ) ≤ s(1− 1

k + s+ 2
)T (r,W 	M) + S(r,W )

≤ s(1− 1

k + s+ 2
)[T (r,W ) + T (r,M)] + S(r,W )

Then, we have from Theorem 1.3 that

(2s− 1− 1

k + s+ 2
− 1

k + s+ 1
)T (r,W ) ≤ 2s(1− 1

k + s+ 2
)T (r,W ) + S(r,W ). (6)

By following the same procedure, we get

(2k − 1− 1

k + s+ 2
− 1

k + s+ 1
)T (r,W ) = (2k − 1− 1

k + s+ 2
− 1

k + s+ 1
)T (r,M) + S(r,W )

≤ 2k(1− 1

k + s+ 2
)T (r,W ) + S(r,W ). (7)

By adding corresponding sides of the relations (8) and (9), we find that

2(
1

k + s+ 1
− 1

k + s+ 2
)T (r,W ) ≤ S(r,W ).

Since 1/(k + s+ 1)− 1/(k + s+ 2) > 0, we arrive at a contradiction, and the proof of Theorem 1.7 is complete.
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