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Abstract
In this paper we establish a coincidence and fixed point theorems for hybrid contraction under generalized weakly
contractive condition by using the concept of (IT)-commutativity in a complete metric space without appeal to

continuity of mappings. Our results extend and generalize the results of Choudhury et al. [6] and others.
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1. Introduction

Study of fixed point theorem for multi-valued mappings was initiated by Nadler [22]. Subsequently a number
of fixed point theorems in metric space have been proved for multi-valued mapping satisfying contractive type
conditions (see, for instance [8], [9], [18], [20], [32] and references therein). Later on the study of hybrid fixed point
theory for nonlinear single-valued and multi-valued mappings is a new development in the domain of contractive
type multi-valued theory( see, for instance [4], [5], [12], [17], [21], [24], [28], [29], [30], [31], [33], [34] and references
therein). On the other hand Alber and Guerre-Delabriere [3], defined weakly contractive mappings on a Hilbert
space and established a fixed point theorem for such a mappings. Subsequently Rhoades [26] use the notion of
weakly contractive mappings and obtained a fixed point theorem in complete metric space.

Afterward, weak contraction and function satisfying weak contractive type inequalities have been considered in a
large number of papers, (see, for instance [1], [2], [6], [7], [11], [25] and references therein).

In this paper we will establish a fixed point theorems under generalized weak contractive condition for a pair
of multi-valued and single-valued mappings by using the concept of (IT)-commutativity of mappings in complete
metric space without appeal to continuity of mappings. Our results extend and generalize the results of Choudhury
et al. [6] and others.

2. Preliminary notes

Let (X,d) be a metric space. Following [22], we define
CL(X)={A:A isanon-empty closed subset of X}.
CB(X)={A:A isanon-empty closed and bounded subset of X}.
C(X)={A:A isanon-empty compact subset of X}.
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BN(X)={A:A isanon-empty bounded subset of X}.

For non-empty subsets A and B of X, and z € X,

D(A, B) =inf{d(a,b):a € Abe B}.

H(A, B) = max[sup{D(a, B) : a € A}, sup{D(A,b) : b € B}].

d(z,A) =inf{d(z,a): a € A}.

0(A, B) = sup{d(a,b) :a € A,b € B}.

Following Hadzié¢-Gaji¢ [13] and Pant [23], Singh-Mishra [30] introduced the notion of R-weak commutativity of a
hybrid pair of single-valued and multi-valued mappings.

Definition 2.1. [30] : Let (X,d) be a metric space. The mappings f : X — X and T : X — CL(X) are
pointwise R-weakly commuting on X if given « € X and fx € X, there exists R > 0 such that

d(fy,Tfz) < Rd(Tz, fx) foreachye X NTz. (A)

Mappings f and T will be called R-weakly commuting on X if for each € X and (A) hold for some R > 0.
Following Jungck [15] and Jungck-Rhoades [16], we have the following definition.

Definition 2.2. The mappings f : X — X and T : X — CL(X) are weakly compatible if they commute at
their coincidence points, that is, T fr = fTx whenever fz € Tx.
Following Itoh-Takahashi [14] and Singh-Mishra [30], we have the following definition of (IT)-commutativity.

Definition 2.3. The mappings f : X — X and T : X — CL(X) are commuting at a point x € X if fTx C T fx.
f and T are commuting on X if they are commuting at each point x € X.
The above commutativity is called Itoh-Takahashi commutativity or simply (IT)-commutativity (see, [30]).
The following example shows that (IT)-commutativity of f and T at a coincidence point is indeed more general
than their weak compatibility at the same point.

Example 2.4. [30] : Let X = [0,00) with the usual metric d and fz = 4z, Tz = [3 + z,00), x € X. Then
fleTl, fT1 Cc Tf1,and f,T are (IT)-commuting at x = 1. The inequality (A) is also satisfied for x = 1 and f,T
are R-weakly commuting at x = 1. Notice that f,T are not weakly compatible since f7'1 # T f1.

Notation C(f,T) will stand for the set of coincidence points of the mappings f and T, that is, C(f,T) = {z :
fzeTz}.
Following Rhoades [26], we have the following definition.

Definition 2.5. [26] : A mapping f : X — X, where (X, d) is a metric space, is said to be weakly contractive
if for x,y € X

d(fz, fy) < d(z,y) — ¢(d(z,y)),

where ¢ : [0,00) — [0,00) is a continuous and non-decreasing function such that ¢(¢t) = 0 if and only if ¢ = 0. If
one takes ¢(t) = (1 — k)t, where 0 < k < 1, a weak contraction reduces to a Banach contraction.

In (1976-77), Delbosco [10] and Skof [35] have established fixed point theorem for self mappings of complete
metric space by altering the distances between the points and subsequently, Khan et al. [19] generalized the notion
of altering distance between the point.

Definition 2.6. ([10] see also [35]): A function 9 : [0,00) — [0, 00) is called an altering distance function if the
following properties are satisfied:
I. 7 is monotone increasing and continuous,
II. %(¢t) = 0 if and only if ¢ = 0.
Recently Choudhury et al. [6] defined generalized weak contraction and proved the following theorem.

Definition 2.7. [6] : Let (X, d) be a metric space, f a self mapping of X. We shall call f a generalized weakly
contractive mapping if for all z,y € X

U(d(fx, fy) < v (maz { d(w,y),d(z, fr),d(y, fy), 5ld(@, fy) + d(y, fz)] })
—q&(max{d(m, y)a d(ya fy)})a
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where 9 is an altering distance function and ¢ : [0,00) — [0, 00) is a continuous function with ¢(¢) = 0 if and only
ift=0.

Theorem 2.8. [6] : Let (X,d) be a complete metric space, and let f : X — X be such that

Y(d(fx, fy) < o (max{ d(z,y),d(z, fz),d(y, fy), 5(d(x, fy) + d(y, fx)] })
_¢(max{d(xv y)a d(ya fy)})a

for some ¢ and v defined as in Definition 2.5 and 2.6. Then f has a unique fixed point.

3. Main results
Now we state our main result.

Theorem 3.1. Let (X,d) be a complete metric space. Let S,T : X — C(X) be two multi-valued mappings
and f: X — X be a self mapping such that for all z,y € X

SX)UT(X) C f(X) (1)
f(X) is closed (2)
Y(H(Sz, Ty)) < p(M(z,y)) — d(m(z,y)), (3)
where

M (x,y) = max { d(fz, fy), D(fz,Sz), D(fy, Ty), 5|D(fz,Ty) + D(fy, Sz)] }

and

m(x,y) = maz{d(fz, fy), D(fz, Sz), D(fy,Ty)},

where ¢ : [0,00) — [0,00) is a continuous function with ¢(¢) = 0 if and only if ¢t = 0 and ¢ : [0,00) — [0,00) is
an altering distance function. Then S, f and T, f have a coincidence point. Further S and f have a common fixed
point fu provided ffu = fu and S, f are (IT)-commuting at v € C(S, f) and if T and f have a common fixed
point fu provided ffu = fu and T, f are (IT)-commuting at v € C(T, f). Then S,T and f have a common fixed
point.

Proof. Let xy be an arbitrary point in X. We shall construct sequences {z,} and {y,} as follows. Since
S(X)UT(X) C f(X), we can choose points x1,z2 in X such that

y1 = fr1 € Sxo

and

Yo = fxg € Twy.

In view of the Remark of Nadler [22, page 480], we have the following
d(fxy, fas) < H(Sxo,Tx1).

So

Y(d(y1,y2)) < Y(H(Szo, Tz1)) < P(M(20,71)) — d(m(20, 21)). (4)
Similarly choose z3,z4 in X such that

ys = frs € Sxo

and

Yo = fxg € Tas.
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Again in view of the Remark of Nadler [22, page 480], we have the following

d(fxs, fxa) < H(Sxa, Tx3).

So

V(d(ys,ya)) < P(H(Sz2, Tag)) < Y(M(w2,23)) — ¢(m(w2,23)). (5)

We continue this process to obtain a sequence {y,} in X such that

Yon+1 = fx2n+1 S SmZn
and
Yon+2 = fI2n+2 S T$2n+1, for all n = 0,1,2,3... .

If there exists a positive integer 2n such that ya2y,+1 = Yant2, then yo,41 is a coincidence point of f and T'. A similar
conclusion holds if Yo, 42 = Yant3, for some n, then f and S have a coincidence point. Therefore we may assume
that y,, # yn41, for all n > 0. Then we have the following

Y(d(Yant1,v2nt2)) < Y(H(Sw2n, T2ony1)) < W(M (220, T2nt1)) — ¢(Mm(T2n, Tani1))

d(fx?ru fm2n+l>7 D(fm%’“ San) (f$2n+17 T:I;2n+1
<
< <max { %[D(fl?n; T$2n+1> + D(f$2n+1, S.’E2n

—¢ (maz { d(fron, frani1), D(fron, Stan), D(frons1, Txoni1) })

A(Y2n, Y2n+1), AY2n, Y2n+1), A(Y2n+1, Y2n+2), })
/¢ <mam { %[d(y%u y2n+2) + d(y2n+1a y2n+1)]

—¢ (max { d(Yan, Yan+1), D(fan, STan), D(fran+1, TT2n+1) }) .
Since 2[d(yan, Yon+2)] < maz{d(yon, Y2n+1): d(Y2nt1, Y2n+2)}, it follows that

IN

Y(d(Yant+1:Y2n+2)) < (maz {d(Yon, Yon+1)s A(Y2n+1, Yant2)})
—¢ (maz { d(yan,Yyan+1), D(fan, Sx2n), D(fr2ni1, Tr2n11) })- (6)

Suppose that d(Yon, Yan+1) < d(Y2n+1, Y2nt2) and d(Yon, Yant+1) < D(f2on, Stay), for some positive integer n.
Then from (6), we have

Y(d(y2n+1, Y2nt2)) < P(d(Y2n+1, Yant2)) — G(D(fr2n, ST2n)),

that is , ¢(D(fxan, Sxe,)) < 0, which implies that D(fxa,,Sx2,) = 0, that is fxa, € Sz, or yo, € Sza,
contradicting the formation of the sequence. Therefore D(fxon, Stan) < d(Yon,Y2n+1), for all n > 0. Again
suppose that d(yan, Yon+1) < d(Yan+1, Yont2) and d(yan, Yont1) < D(fxont1, TTont1), for some positive integer n.

Then from (6), we have

P(d(Y2n+1,Y2n+2)) < V(d(Y2nt1, Y2n+2)) — O(D(fr2ns1, TTon41))s

that is, ¢(D(fxont1, Tront1)) < 0, which implies that D(fxon11,Tx2,+1) = 0, that is fzoni1 € Txapy1 or
Yon+1 € Txont1 contradicting the formation of the sequence.

Therefore D(fxont1, TTon+1) < d(Y2n, Y2ns1), for all n > 0.

Now

V(d(Yont3, Yont2)) < Y(H(Szont2, TTont1)) < V(M (T2n+2, Tont1)) — d(Mm(T2n42, Tant1))
< ¢ <max{ d(front2, front1), D(fTont2, STanta), (f$2n+1,T$2n+1 })

$ID(franye, Txoni1) + D(frany1, STanio)]
—¢ (maz { d(frons2, frons1), D(fTons2, STonta), D(fr2nt1, Tons1) })

" <max { d(Y2n+2: Y2n+1), d(Y2n+2, Y2n+3), AY2n+1; Y2n+2), })

IN

$[d(Yanr2, Yanr2) + d(Yani1, Yonis)]
—¢ (maz { d(y2n+2,Yon+1), D(fT2nt2, STons2), D(frant1, TToni1) })-

Since $[d(Yan+1,Y2nt3)] < maz{d(Yont1,Y2n+2), AY2nt2, Y2nts)}, it follows that

P(d(Yont2, Yonts)) < ¥ (max {d(Yont1, Yon+2), d(Yon+2, Yont3)})
—¢ (maz { d(yan+1,Y2ns2), D(fr2nt2, STont2), D(frons1, Txont1) }) - (7)
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Suppose that d(yon+1, Yon+2) < d(Yon+2, Yon+s) and d(Yont1, Yont2) < D(fxont2, STant2), for some positive integer
n.
Then from (7), we have

PY(d(Yont2, Yon+3)) < U(d(Yont2, Y2n+3)) — O(D(frany2, STani2)),

that is , ¢(D(frant2, STant2)) < 0 which implies that D(fxon12, Sxant2) = 0, that is fae,i2 € Szanie or
Yont2 € STapyo contradicting the formation of the sequence. Therefore D(fxant2, S%on12) < d(Y2n+1, Y2n+2), for

all n > 0. Again suppose that d(yoni1,¥2n+2) < d(Yani2,Y2nt3) and d(Yani1, Yont2) < D(fr2ny1, Toan41), for
some positive integer n. Then from (7), we have

Y(d(Y2nt2, Y2n+3)) < V(d(Y2nt2, Y2nt3)) — O(D(frans1, TTon41)),

that is, ¢(D(fz2n+17Tx2n+l)) <0, which implies that D(fI2n+1,TI2n+1) = 0, that is fI2n+1 S T.I2n+1 or
Yon+1 € Txop41 contradicting the formation of the sequence.

Therefore D(fzont1, TTan+1) < d(Y2n+1, Yan+2), for all n > 0.

Thus {d(yn,Yn+1)} is a monotone decreasing sequence of non-negative real numbers.

Hence there exists an r > 0 such that

1My —00d(Yns Ynt1) = 1. (8)
In view of (6), for all n > 0,

V(d(Y2nt1, Y2n+2)) < V(d(Y2ns Y2n+1)) — O(d(Y2n, Y2n+1))-

Taking the limit as n — oo in the above inequality and using the continuity of ¢ and ), we have

P(r) < o(r) — (r),

which is a contradiction unless r = 0.
Hence we have

Now we shall show that {y, } is a Cauchy sequence. It is sufficient to show that {ya, } is a Cauchy sequence. Suppose
that {ya,} is not a Cauchy sequence. Then there exists an € > 0 such that for each integer 2(k) there exists an
even integer,

2m(k) > 2n(k) > 2(k)

such that

d(Yan(k)s Yom(k)) = € (10)
for every integer 2(k). Let 2m(k) be the least even integer exceeding 2n(k) satisfying (10), such that

d(Yon (k) Y2m(k)—2) < €

Using the triangle inequality, we have

€ < d(Yank) Yamk) < dYan(k)s Yomk)—2) + AY2m(k)—2> Yom(k)—1) + AY2m(k)—1> Y2m(k))s

that is,

€ < d(Yan(k)s Yamk)) < €+ AYo2mk)—2, Yomk)—1) T AY2mk)—1, Y2m(k))-

Letting k — oo in the above inequality and using (9), we have

limp—ood(Yon (k) Y2m(k)) = € (11)
Again

d(Wan(k)s Yomk)) < dW2n(k)> Yonk)+1) T AY2nk)+1> Yomk)+1) T AY2mk)+15 Y2m(k))

and

d(Yonk)+15 Yom)+1) < AWan)+1, Yan(k)) T dY2nk) Yomk)) T AY2m(k)» Y2m(k)+1)-
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Letting k — oo in the above inequality and using (9) and (11), we have

i oo d(Yon (k) +15 Y2m(k)+1) = €

Again

d(Yan(k) Yom)+2) < AdW2n(k)> Yonk)+1) T AY2nk)+15 Y2mr)+1) + d(Y2mk)+15 Yom k) +2)-

Letting k — oo in the above inequality and using (9) and (12), we have

limg oo d(Yan (k) Yom(k)+2) =
Further

d(Yon k) Yom(e)+1) < A(Yan(k)s Yonk)+1) T AYonk)+1> Yomk)+1)-

Letting k — oo in the above inequality and using (9) and (12), we have

limk%ood(y2n(k)7 y2m(k)+1) =¢€

Putting & = yonx) and y = Yomk)+1 in (3), we have

Y(A(Yonk)+1, Yomr)+2)) < V(H(STonmy, TZomk)+1)) < V(M (T2nk), Tamk)+1)) — P L2n(k)s T2mk)+1))

< v (mam { d(fan(k)s [P2mk)+1)s D(FTan(k), STan(k)), (fx2m(k)+1»T$2m k)+1)s
- 3[D(fTanrys TTam@i) 1) + D(fTomry 41, STanr) )]

—¢ (max { d(fon(k)a fx2m(k)+1)7 D(fxzn(km SxQn(k)) (f$2m(k)+1, T»sz

" (max{ d(Yon k), Yom(k)+1)» AY2n (k) > Yank)+1) > AY2m (k) +15 Y2m (k) +2)s
1
5dWon ), Yome)+2) + AYamk)+1> Yon () +1)]

—¢ (maz { dWan)s Yam@)+1) AWanik) Yon(k)+1)> AY2mk)+1, Y2m(k)+2) }) -

IN

Letting k — oo in the above inequality and using (9), (11 — 14) and using the continuity of ¢ and v, we have

P(e) < () — ¢(e),

which is a contradiction by virtue of a property of ¢.
Therefore {y2,} is a Cauchy sequence. In view of (9), {y,} is a Cauchy sequence in X.
Since X is complete, then there exists a point z in X such that

limn—)ooy2n+1 =z = limn—)oofIQn-&-l € S‘TQn

and

limnﬁooy2n+2 =z = limn%oofx2n+2 € T$2n+1-

Since f(X) is closed, then there exist a point v in X such that fu = z.
Now firstly we have

Y(D(Su, frani2)) Y(H(Su, Tron+1))
V(M (u, T2n41)) — ¢(m(u, ¥2n41))

d(fu, front1), D(fu,Su), D(froni1, TToni1),
(G (mam { 3[D(fu, Tw2ni1) + D(foania, Su)] }>

—p(max{d(fu, frany1), D(fu, Su), D(froni1, To2n41)})-

Taking limit n — oo, we have

IAINA

IN

Y(D(Su,2)) < Y(max{d(z,z), D(z,Su),d(z, z), %[d(z, z) + D(z, Su)]})

—¢(max{d(z,z), D(z, Su),d(z,2)})

< w(max{O,D(Su,z),O,%[O+D(z,5u)]})
—¢(max{0, D(z, Su),0})
< Y(D(Su, 2)) — ¢(D(Su, 2)),

13

(13)

(14)

")

1) })
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which implies that ¢(D(Su, z)) = 0. Hence D(Su, z) = 0, that is z € Su.
Therefore z = fu € Su.
Now if ffu = fu, then fz = z and from the (IT)- commutativity of S and f, we have

z=fz=ffue fSuC Sfu==_Sz,

implies z = fz € S=z.
Further

Y(D(frons1,Tu)) P(H (Szan, Tu))
w(M(xQna u)) - (b(m(xQn, u))

d(fxon, fu), D(fran, Stan), D(fu, Tu),
¥ <mam { g[D(fxgn, Tu§ + D(2fu, Stap )] })

—p(max{d(fxon, fu), D(fron, Stan), D(fu, Tu)}).

Taking limit n — oo, we have

IAIA

IN

Y(D(z,Tu)) < (mazx{d(z,z),d(z,2),D(z,Tu), %[D(Z,T’LL) +d(z,2)]})
—¢(max{d(z,z),d(z,z), D(z,Tu)})

¥(max{0,0, D(z, Tu), %[D(z, Tu) +0]})

—¢p(max{0,0, D(z,Tu)})

< Y(D(z,Tu)) — ¢(D(z,Tu)),

which implies that ¢(D(z, Tu)) = 0. Hence D(z,Tu) = 0, that is z € Tu.
Therefore z = fu € Tu.
Now if ffu = fu, then fz = z and from the (IT)-commutativity of T' and f, we have

IN

z=fz=ffue fTuCcTfu="Tz,
implies z = fz € Tz.

Thus z is a common fixed point of S, 7T and f.

Corollary 3.2. Let (X,d) be a complete metric space. Let S,T : X — C(X) be two multi-valued mappings
and f : X — X be a self-mapping such that for all z,y € X

S(X)UT(X) C f(X) (15)

F(X) is closed (16)

H(Sz,Ty) < maz{ d(fz, fy), D(fz,Sz), D(fy,Ty), 5[D(fz, Ty) + D(fy,Sz)] }

where ¢ : [0,00) — [0,00) is a continuous function with ¢(¢t) = 0 if and only if ¢ = 0. Then S, f and T, f
have a coincidence point. Further, if S and f have a common fixed point fu provided ffu = fu and S, f are
(IT)-commuting at u € C(S, f) and if T and f have a common fixed point fu provided ffu = fu and T, f are

(IT)-commuting at uw € C(T, f). Then S,T and f have a common fixed point.
Proof. By taking ¢ as an identity function in the proof of Theorem 3.1, we can get the proof.

Corollary 3.3. Let (X,d) be a complete metric space. Let S : X — C(X) be a multi-valued mapping and
f: X — X be a single-valued mapping such that for all z,y € X

S5(X) C f(X) (18)

F(X) is closed (19)
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V(H(Sz,Sy)) < ¢ (max{ d(fz,fy),D(fz,Sz),D(fy,Sy), 51D (fx,Sy) + D(fy,Sx)] })
—gb(max{d(f:c,fy),D(fx,Sx),D(fy,Sy)}), (20)
where ¢ : [0,00) — [0,00) is a continuous function with ¢(¢) = 0 if and only if ¢ = 0 and ¢ : [0,00) — [0,00) is

an altering distance function. Then S and f have a coincidence point. Further , if S and f have a common fixed
point fu provided ffu = fu and S, f are (IT)-commuting at u € C(S, f).Then S and f have a common fixed point.

Proof. It may be completed following the proof of Theorem 3.1 by taking S =1T.

Corollary 3.4. Let (X,d) be a complete metric space. Let S : X — C(X) be a multi-valued mapping such
that for all z,y € X
U(H(Sz,Sy)) < o (maz{ d(z,y),D(w,S2), D(y,Sy), 5(D(z, Sy) + D(y, Sz)] })
—¢(max{d(z,y), D(z,Sz), D(y, Sy)}), (21)

where ¢ : [0,00) — [0,00) is a continuous function with ¢(¢) = 0 if and only if ¢ = 0 and ¢ : [0,00) — [0, 00) is an
altering distance function.Then S has a unique fixed point.

Proof. If we take S =T and f as an identity mapping in Theorem 3.1, then we can get the proof.
Now taking clue from Example 3.1 of [6] we have an example.

Example 3.5. Let X ={0,1,2,3,....}. Let d: X x X — R be given as

x4+, if x
d(x,m:{o sz

Then (X, d) is a complete metric space.
Let 9 : [0,00) — [0, 00) be defined as follows:

P(t) =12, fort € [0,00).
Let ¢ : [0,00) — [0,00) be defined as follows:

£ ifs<1
if s>1

¢(s) =

for s€[0,00).

2
Then ¢ and ¢ have the properties mentioned in Theorem 3.1.
Let S: X — C(X) be defined as follows:

_f {z—-1}, if x#0
S”““_{ {0}, if z=0.

Sol. We can see that mapping S is satisfying the contractive condition (21) but it is not satisfying the condition
(6) of [8, Page 266].

Note. In the above example, we set x =n + 1 and y = n, where n is a positive integer.
Then according to the case x # y, if y # 0 and = > y,

H(Sz,Sy) =2n—1,

and

maz { d(z,y),d(z, fz),d(y, fy), 3d(z, fy) + d(y, fz)] } =2n+1.
Clearly

H(SJ}, Sy) = kpmaz { d(l?, y)v d(l‘, fl‘), d(y’ fy)’ %[d(x’ fy) + d(y7 fl‘)] } )
where

_2n—1
T oan4 17

n
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Since k,, — 1 as n — oo, there dose not exist any k with 0 < k < 1 such that

H(Sz,Sy) < kmax{ d(z,y), D(x, Sx), D(y, Sy), %[D(x, Sy) + D(y, Sz)) } ,
for each z,y € X.

Hence Example 3.5 does not satisfy condition (6) of [8]. This show that condition (21) is more general than (6) of [8].

Remark 3.6. In Corollary 3.4, we obtain slightly generalized version of Theorem 3.1 of [6] and Theorem 2.1 of
[11].

Remark 3.7. If we take S and T are single-valued mappings and f as an identity mapping in Theorem 3.1,
then we can get Theorem 3.2 of [6].

Remark 3.8. As it is shown in [6] that a generalized weakly contractive condition 2.1 of [6] is more general
than that (21) of Rhoades [27], so we can say that the contractive condition (3) and (17) are more general than the
contractive condition used in [33].
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