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Abstract

In this paper we give conditions which entailing commutativity of Banach algebra A and then we show that under
special hypotheses, each Jordan homomorphism ϕ between Banach algebras A and B is continuous.
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1. Introduction

Let A and B be Banach algebras and ϕ : A −→ B be a linear map. Then ϕ is called Jordan homomorphism if

ϕ(ab + ba) = ϕ(a)ϕ(b) + ϕ(b)ϕ(a) (a, b ∈ A),

or equivalently, ϕ(a2) = ϕ(a)2 for all a ∈ A, [4]. Moreover, if ϕ is multiplicative, that is,

ϕ(ab) = ϕ(a)ϕ(b) (a, b ∈ A),

then ϕ is called ring homomorphism.
It is obvious that ring homomorphisms are Jordan, but the converse is false, in general. In fact, the converse is

true under a certain conditions. For example, each Jordan homomorphism from a commutative Banach algebra A
into C is a ring homomorphism.

In [5], Zelazko proved that each Jordan homomorphism of Banach algebra A into a semisimple commutative
Banach algebra B is ring homomorphism. See also [6] for another characterization of this result.

Le Page [1] has shown that a complex unital Banach algebra A is necessarily commutative if it satisfies the
following condition,

‖ab‖ ≤ ‖ba‖, (a, b ∈ A).

It is known that the Le Page’s inequality does not imply commutativity in the non-unital case. A counter-example
has been given in [2]. Also it has shown that the Banach algebra A is commutative, if for all a ∈ A, ‖a‖2 ≤ ‖a2‖,
see [1] for example.

In this paper we investigate some conditions which entailing commutativity of Banach algebra A and then we
give a sufficient condition that each Jordan homomorphism ϕ : A −→ B to be ring homomorphism.
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2. Main Result

For Banach algebra A, we denote Jn(A) = {a ∈ A : an = a}, and the Banach algebra A is said to be idempotent
if J2(A) = A.

Proposition 2.1 Every idempotent Banach algebra A is commutative.

Proof. Let a, b be arbitrary elements of A. Then

a + b = (a + b)2 = a2 + b2 + ab + ba = a + b + ab + ba.

Hence, ab = −ba. Thus,
ab = (ab)2 = (−ba)2 = (ba)2 = ba.

Therefore ab = ba, and A is commutative.

Corollary 2.2 Let A be a unital Banach algebra such that (ab)2 = a2b2, for all a, b ∈ A. Then A is commutative.

Proof. Let e be a unit element of A, then for all a, b ∈ A,

(a(b + e))2 = a2(b + e)2,

which proves that
(ab)2 + aba + a2b + a2 = a2b2 + 2a2b + a2.

Thus, aba = a2b, for all a, b ∈ A. Replacing a by a + e in the last equality, we get

(a + e)b(a + e) = (a + e)2b.

Therefore we conclude that ab = ba, as required.

The next example shows that the hypothesis that A is unital in above corollary is essential.

Example 2.3 Let A be a unital Banach algebra and let B be the Banach algebra of all 2× 2 matrices having [a b]
in the first line and [0 0] in the second line, for all a, b ∈ A. Then B is not unital, but it is obvious to check that
(xy)2 = x2y2, for all x, y ∈ B. However, B is not commutative.

Theorem 2.4 Let A be a Banach algebra such that J3(A) = A, then A is commutative.

Proof. Let a, b ∈ A be arbitrary elements. Then

(a2ba2 − ba2)2 = (a2ba2 − ba2)(a2ba2 − ba2)
= (a2ba2)(a2ba2)− (a2ba2)(ba2)− (ba2)(a2ba2) + (ba2)(ba2)
= (a2ba4ba2)− (a2ba2ba2)− (ba4ba2) + (ba2ba2)
= (a2ba2ba2)− (a2ba2ba2)− (ba2ba2) + (ba2ba2)
= 0.

Thus, (a2ba2 − ba2)2 = 0. Similarly, we deduce (a2ba2 − a2b)2 = 0. So

(a2ba2 − ba2)3 = (a2ba2 − a2b)3 = 0.

Therefore by assumption we have
a2ba2 − ba2 = a2ba2 − a2b = 0.

Thus,
a2b = ba2, (a, b ∈ A).

Now by the above equation we get

ab = (ab)3 = a(ba)2b = (ba)2ab = (bab)(a2b)

= (bab)(ba2) = b(ab2)a2 = b(b2a)a2 = b3a3 = ba.

Therefore ab = ba, and the proof is complete.

The set Z(A) = {a ∈ A : ab = ba (b ∈ A)} is called the center of A. Clearly, A is commutative if and only if
Z(A) = A.
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Theorem 2.5 Let A be a Banach algebra such that a + a2 ∈ Z(A) for all a ∈ A. Then A is commutative.

Proof. Let a, b ∈ A. Then by assumption we get

(a + b) + (a + b)2 ∈ Z(A),

which shows that ab + ba ∈ Z(A). Therefore

(ab + ba)a = a(ab + ba),

and so for all a, b ∈ A

a2b = ba2. (1)

On the other hand we have

(a + a2)b = b(a + a2). (2)

By (1) and (2), we get ab = ba and the proof is complete.

The proof of the following Lemma contained in [4].

Lemma 2.6 Let A and B be Banach algebras and ϕ : A −→ B be a Jordan homomorphism. Then for all a, b ∈ A,

ϕ(aba) = ϕ(a)ϕ(b)ϕ(a).

Theorem 2.7 Let ϕ : A −→ B be a Jordan homomorphism. If J2(A) = A, then ϕ is ring homomorphism.

Proof. Let a, b ∈ A. Since A is idempotent, we get ab + ba = 0. So

ϕ(a)ϕ(b) + ϕ(b)ϕ(a) = ϕ(ab + ba) = 0.

Thus,

ϕ(a)ϕ(b) = −ϕ(b)ϕ(a). (3)

Since ϕ is Jordan, by above Lemma we get

ϕ(aba) = ϕ(a)ϕ(b)ϕ(a) = −ϕ(b)ϕ2(a) = −ϕ(b)ϕ(a2) = −ϕ(b)ϕ(a). (4)

By proposition 2.1, A is commutative, so

ϕ(aba) = ϕ(a2b) = ϕ(ab). (5)

Thus, (4) and (5) implies

ϕ(ab) = −ϕ(b)ϕ(a). (6)

By (3) and (6) we deduce
ϕ(ab) = ϕ(a)ϕ(b),

for all a, b ∈ A. Therefore ϕ is ring homomorphism.

Theorem 2.8 Let ϕ : A −→ B be a linear map. If J3(A) = A, then ϕ(a) = 0, for all a ∈ A.

Proof. By Theorem 2.1, A is commutative, so for all a, b ∈ A, we have

ϕ(a + b) = ϕ((a + b)3) = ϕ(a3 + b3 + 3ab2 + 3a2b) = ϕ(a + b) + 3ϕ(ab2 + a2b).

Thus,

ϕ(ab2 + a2b) = 0. (7)
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Replacing b by b + c in (7), we have

ϕ(ab2 + ac2 + 2abc + a2b + a2c) = 0. (8)

Combing (7) and (8), we get

ϕ(abc) = 0. (9)

Take a = b = c in (9), then ϕ(a3) = 0, and so ϕ(a) = 0, as required.

It is well-known that every multiplicative linear functional ϕ on Banach algebra A is continuous and ‖ϕ‖ ≤ 1,
see [1] for example.

Now we have the following.

Proposition 2.9 Let ϕ : A −→ C be a Jordan homomorphism. Then ϕ is continuous and ‖ϕ‖ ≤ 1.

Proof. Suppose that there exist a ∈ A with ‖a‖ < 1 and |ϕ(a)| > 1. Take b = a/ϕ(a). Then ‖b‖ < 1 and ϕ(b) = 1,
which is contradiction by Theorem 6 of [6], therefore for all a ∈ A with ‖a‖ < 1, |ϕ(a)| ≤ 1. This complete the proof.

In [3], Draghia proved that every Jordan homomorphism from Banach algebra A onto a semisimple Banach
algebra B is continuous.

The next result, which is a extension of above proposition, prove Draghia’s Theorem without surjectivity.

Theorem 2.10 Let ϕ : A −→ B be a Jordan homomorphism. If B is semisimple, then ϕ is continuous.

Proof. Let ψ : B −→ C be a Jordan homomorphism. Then ψ is bounded by above proposition, and

ψ ◦ ϕ(a2) = ψ(ϕ(a2)) = ψ(ϕ(a)2) = ψ(ϕ(a))2 = ψ ◦ ϕ(a)2.

Therefore ψ ◦ ϕ is a Jordan homomorphism from A into C, so it is continuous by above proposition. Now suppose
that (an) be a sequence in A such that limn an = a and limn ϕ(an) = b. Then

ψ(b) = ψ(lim
n

ϕ(an)) = lim
n

ψ ◦ ϕ(an) = ψ ◦ ϕ(a),

thus, ψ(b − ϕ(a)) = 0. Since B is semisimple, we get ϕ(a) = b. Therefore ϕ is continuous by the close graph
Theorem.
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