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Abstract

The existence of positive semidefinite solutions of the operator equation

n
∑

j=1

An−jXAj−1 = Y is investigated by

applying grand Furuta inequality. If there exists positive semidefinite solutions of the operator equation, one of the
special types of Y is obtained, which extends the related result before. Finally, an example is given based on our
result.
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1. Introduction

A capital letter (such as T ) means a bounded linear operator on a Hilbert space. T > 0 and T > 0 mean a positive
semidefinite operator and a positive definite operator, respectively.

In the middle of last century, E. Heinz et al. studied operator theory and obtained the following famous theorem:
Theorem 1.1 (Löwner-Heinz Inequality, [16] [13]). If A > B > 0, then Aα > Bα holds for any α ∈ [0, 1].

It is essential to notice that Löwner-Heinz inequality does not always hold for α > 1.

In 1987, T. Furuta proved the following result which is an important and historical extension of Löwner-Heinz
inequality:
Theorem 1.2 (Furuta Inequality, [8]). If A > B > 0, then for each r > 0,
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hold for p > 0, q > 1 with (1 + r)q > p + r.

Afterwards, the studies of the theory of operator inequalities have been developed quickly and some results
related to Furuta inequality have been obtained in recent twenty-five years, such as [1, 2, 9, 17, 23, 24, 25]. It is
well known that Furuta inequality has many applications. See [3, 5, 11, 14, 15, 20, 21, 22, 26].

In 1995, T. Furuta showed another operator inequality which interpolates Furuta inequality:
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Theorem 1.3 (Grand Furuta Inequality, [9]). If A > B > 0 with A > 0, then for each t ∈ [0, 1] and p > 1,

A1−t+r > {A
r
2 (A− t

2 BpA− t
2 )sA

r
2 }

1−t+r

(p−t)s+r (1.3)

holds for s > 1 and r > t.
Consequently, some nice proofs of grand Furuta inequality were shown, such as [6] and [10]. K. Tanahashi, in

[18], proved that the outer exponent value of (1.3) is the best possible. Later on, the proof was improved by T.
Yamazaki and M. Fujii et al. in [19] and [7], respectively.

Recently, T. Furuta proved the following theorem by Furuta inequality:
Theorem 1.4 ([12]). Let m and n be nature numbers. If A and B are a positive definite operator and a positive
semidefinite operator, respectively, then there exists positive semidefinite operator solution X satisfying the following
operator equation:
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for r such that

{

r > 0, if n > m;

r > m−n
n−1 , if m > n > 2.

Our purpose of the present article is to study the existence of positive semidefinite solution of operator equation
n

∑

j=1

An−jXAj−1 = Y by grand Furuta inequality, and show a more generalized special type of Y than Theorem 1.4.

Although we use the same method as in [12], we think that careful argument is required, and a more generalized
example, especially the expression of Y , is also required. Therefore, we have this article.

2. Positive semidefinite solutions of an operator equation

Let us recall a useful lemma first.

Lemma 2.1 ([4], [12]). Let A be a positive definite operator and B be a positive semidefinite operator. Let m be
a positive integer and x > 0, then
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Am−jBAj−1.

Now we give the main result as follows,

Theorem 2.1. Let m, n and k be positive integers. If A and B are a positive definite operator and a positive
semidefinite operator, respectively, then for each t ∈ [0, 1], there exists positive semidefinite operator solution X

which satisfies the following operator equation:
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for r such that

{

r > t, if (1 − t)n > (m − t)k ;

r > max{ (m−t)k−(1−t)n
n−1 , t}, if (m − t)k > (1 − t)n with n > 2 .

Proof. First, by A + xB > A > 0 holds for any x > 0, then A−1 > (A + xB)−1 > 0. Replacing A by A−1, B by
(A + xB)−1, p by m, s by k in (1.3), and taking reverse, we have
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For any α ∈ [0, 1], applying Löwner-Heinz inequality to (2.2), and taking an integer n such that 1
n

= 1−t+r
(m−t)k+r

·α,

then the following inequality is obtained:
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By α ∈ [0, 1] and the condition of r in grand Furuta inequality, we have to take r > t if (1 − t)n > (m − t)k, or

r > max{ (m−t)k−(1−t)n
n−1 , t} if (m − t)k > (1 − t)n with n > 2.

Put Y (x) = (A
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n . According to (2.3), we have Y (x) > Y (0) = A
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x > 0. Thus, Y ′(0) > 0. Differentiating Y n(x) = A
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x = 0, the following equality holds.
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Replacing Y (0) by A
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n , Y ′(0) by X , we have
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Replacing A by A
n

(m−t)k+r in (2.4), (2.1) is obtained. �

Remark 2.1. If we take t = 0 and k = 1 in Theorem 2.1, the theorem is just Theorem 1.4, which is the main
result of [12].

Remark 2.2. According to the related result before, if A and Y are positive semidefinite matrices in matrix

equation

n
∑

j=1

An−jXAj−1 = Y , then X is also a positive semidefinite matrix, see [4]. However, by Theorem 2.1, in

some special cases, if Y can be expressed as the right hand of (2.1) without being a positive semidefinite matrix,

there still exists positive semidefinite solution satisfying the matrix equation

n
∑

j=1

An−jXAj−1 = Y .

For example, let

A =

(

1 0

0 2 × 2
1
3

)

, Y =

(
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1
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3
4
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1
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3
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)

.

Although Y is not a positive semidefinite matrix (because its eigenvalues are {37.5589 . . . ,−1.5589 . . .}), by simple
calculation, the solution of the following matrix equation

A2X + AXA + XA2 = Y
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is
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which is still a definite matrix whose eigenvalues are {2.9013 . . . , 0.1119 . . .}. The critical reason is that Y can be
expressed as follows,
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which is the right hand of (2.1) under the condition of m = 2, n = 3, k = 2, t = 1
2 , r = 1 and B =

(

1 1
1 1

)

.
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