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Abstract

Let fcut(n, cn) be the expectation of the value of the maximum cut of a given random graph G(n, bcnc) with n
vertices and cn edges. We study the asymptotic change of fcut(n, cn)/(cn) as n tends to infinity with various edge
densities c. In this paper, we provide new upper bounds by correcting the error items when applying the first
moment method. Specifically, we extrapolate the region of c from c > 1.386 to c > 1.001.
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1. Introduction

The maximum cut problem (MAX CUT) is the problem of selecting as many edges as possible so that the subgraph
of selected edges has no giant component. Because of its theoretical importance and its application in circuit
layout design, statistical physics and many other fields, MAX CUT is considered to be one of the most studied
combinatorial optimization problems. MAX CUT is a NP -hard problem, but it can be solved in polynomial time
for some special classes of graphs (e.g. if the graphs are planar [5]). Since NP -hard problems do not seem to
have efficient algorithms, it is encouraged to solve them by finding an ε-approximation algorithm, which delivers
a solution of value at least ε times the optimal one in polynomial time. In recent years, MAX 2-CUT has been
proved to be 0.5-approximable[6], 0.878-approximable[4] by semidefinite programming, and not better than 0.941-
approximable[7] in polynomial time, unless P = NP .

Given a random graph G(n,m) on n vertices and m edges, the search version of MAX 2-CUT (MAX k-CUT)
consists of finding a partition of the vertex set V into 2(k) sets, which maximizes the number of edges which connects
vertices between different sets. To consider the edge density c = m/n, we rewrite the graph as G(n, bcnc). For
simplicity, we often write cn in lieu of bcnc.

In this paper, basing on the elementary first moment method, we obtain a tighter upper bound for the MAX
CUT problem by correcting the error items for fcut(n, cn). What’s more, we have improved the region of the validity
of the first moment method.

Throughout, we only consider the random graphs having no loops and multiple edges. We denote respectively
f2(n, cn), fk(n, cn) as the expectation of the value of the MAX 2-CUT, MAX k-CUT. The standard asymptotic
and “order ”notations we will use are as follows:

lim
n→∞

f(n)
g(n)

= 1 ⇔ f(n) ' g(n); lim
n→∞

sup
f(n)
g(n)

≤ 1 ⇔ f(n) . g(n).
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2. Main results

For a randomly given graph G(n, cn), MAX 2-CUT experiences a phase transition at c = 1/2. As the edge density
c crosses above 1/2, the number of edges not cut in an optimal cut suddenly changes from Ä(1) to Ä(n). Since a
maximum cut cuts at least 1/2 the edges of a graph, then we have MAX CUT(G) ≥ m/2. Coppersmith et al. [3]
proved the following result which gives a limitation on c. The upper bound holds requires that c > 1.386.

Theorem A. For c large,
(

c

2
+

√
8c

9π

)
n . f2(n, cn) .

(
c

2
+

√
c ln 2

2

)
n.

Similarly, Coja-Oghlan ([2], Theorem 7.1) studied the MAX k-CUT problem on random graphs Gn,p. Since the
number of edges of Gn,p is tightly concentrated around m = cn = p

(
n
2

)
. They obtained the following upper bound

of fk(n, cn),
Theorem B. When c > 2(k − 1) ln k,

fk(n, cn) .
(

1− 1
k

+

√
2 ln k

kc
(1− 1

k
)

)
cn.

In this paper, we prove a new upper bound on the expectation of the maximum cut for random graphs G with
a fixed number of vertices and edges. At the same time, we improved the lower bound of c from 1.386 to 1.188.

Theorem 1 When c > 1.188,

f2(n, cn) .




1
2

+

√√√√
√

9
4 + 3 ln 2

c

2


 cn.

Theorem 2 When c > 1.001,

f2(n, cn) .
(

1
2

+ ε0

)
cn,

where ε0 is the unique positive root of the following equation:

ln 2
c
−

∞∑

i=0

(2ε)2i

2i(2i− 1)
= 0.

In addition, for the MAX k-CUT, we have

Theorem 3 If c satisfies the inequality sin( θ
3 + π

6 ) < 2k−3
2(k−1) , then

fk(n, cn) .
(

1− 1
k

+
(

cos
θ

3
+
√

3sin
θ

3
− 1

)
k − 1

k(k − 2)

)
cn,

where θ = arccosT ∈ [0, π], T = 1− 3(k−2)2 ln k
ck2(k−1) .

3. Proof of theorems

3.1. Proof of theorem 1

Suppose the random graph G has a (maximal) bipartite spanning subgraph H of size larger than (1 − r)cn. Any
fixed partition satisfies each edge of G with probability 1

2 and dissatisfies each edge with probability 1
2 , then by

linearity of the expectations, the probability that there exists such a subgraph H is

P = P[∃ satisfiable H] ≤ 2n
rcn∑

k=0

(
cn

k

)(
1
2

)cn−k (
1
2

)k

.

Since 0 < r < 1
2 , the sum is dominated by the last term. By using Stirling’s formula

n! ' √
2πn(n

e )n, we have
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(
cn
rcn

) ' 1√
2πr(1−r)cn

(
r−r(1− r)−(1−r)

)cn.

Then,

P . 1√
2πr(1−r)cn

2n(rcn + 1)
(

1
2rr(1−r)1−r

)cn

,

ln P

cn
. ln 2

c
+ ln

(
1

2rr(1− r)1−r

)
=

ln 2
c
− (

r ln r + (1− r) ln(1− r)
)− ln 2. (1)

Substituting r = 1
2 − ε

(
0 < ε < 1

2

)
into Eq. (1) and letting x = 2ε,

r ln r + (1− r) ln(1− r) =
(

1
2
− ε

)
ln (1− 2ε) +

(
1
2

+ ε

)
ln (1 + 2ε)− ln 2

=
∞∑

j=1

1
2j(2j − 1)

x2j − ln 2.

Using the result above, we obtain

ln P

cn
. ln 2

c
−

∞∑

j=1

1
2j(2j − 1)

(2ε)2j ≤ ln 2
c
− 1

2
(2ε)2 − 4

3
ε4. (2)

So if ε2 >

√
9
4+ 3 ln 2

c − 3
2

2 , then we have ln 2
c − 2ε2 − 4

3ε4 < 0. Thus P → 0 when n →∞. Therefore,

f2(n, cn) . (1− r)cn =
(

1− 1
2

+ ε

)
cn,

f2(n, cn) .




1
2

+

√√√√
√

9
4 + 3 ln 2

c − 3
2

2


 cn.

Obviously, the inequality
√

9
4+ 3 ln 2

c − 3
2

2 < ln 2
2c holds. Besides, a new lower bound of c can be easily obtained in

the following way,

ln 2
c

< 2ε2 +
4
3
ε4 < 2 · (1

2
)2 +

4
3
· (1

2
)4 =⇒ c > 1.188.

In this way, we obtain both an improved upper bound of fcut(n, cn) and a better lower bound of c. The following
part shows even better bounds of fcut(n, cn) and c. In this case, the form of the new bound of fcut(n, cn) is an
implicit function which can not be expressed explicitly.

3.2. Proof of theorem 2

Specifically, we have obtained the following inequality Eq. (2):

1
cn

ln P . ln 2
c
−

∞∑

j=1

1
2j(2j − 1)

(2ε)j , 0 < ε <
1
2
.

We denote F (x) = ln 2
c −∑∞

j=1
1

2j(2j−1) (2x)j . Clearly, F (x) is a strictly monotone decreasing function. Notice
that, F (0) = ln 2

c > 0 and F (+∞) < 0. Therefore, the equation F (x) = 0 has a unique positive root. Let the root
be ε0, then if ε > ε0 we have,

f2(n, cn) .
(

1
2

+ ε0

)
cn.
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Moreover, it holds that, F (x) > 0 when 0 < x < ε0 and F (x) < 0 when x > ε0. Since

F

(√
ln 2
2c

)
=

ln 2
c
−


1

2
· (2

√
ln 2
2c

)2 +
∞∑

j=2

1
2j(2j − 1)

(2 ·
√

ln 2
2c

)2j




=
ln 2
c
−


 ln 2

c
+

∞∑

j=2

1
2j(2j − 1)

(
2 ln 2

c

)j

 < 0,

ε0 <
√

ln 2
2c holds for any c.

Analogously, we have,

ln 2
c

<

∞∑

j=1

1
2j(2j − 1)

(2ε)2j <

∞∑

j=1

1
2j(2j − 1)

·
(

2 · 1
2

)2j

=⇒ c > 1.001.

Fig. 1 shows the comparison of the upper bounds of our Theorem 1, Theorem 2 and Theorem A.
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Figure 1: Comparison of the results obtained by Theorem A, Theorem 1 and 2

3.3. Proof of theorem 3

For the MAX k-CUT, we have kn ways to partition the vertices into k disjoint sets, and the probability that a given
edge crosses the partition is 1− 1

k . Suppose a given graph G(n,m = cn) has a satisfying subgraph H of size larger
than (1− r)cn, similarly we have 0 < r < 1

k . Then the probability that such a subgraph exists is

P=P [∃ satisfiable H] ≤ kn
∑rcn

j=0

(
cn
j

)
(1− 1

k )cn−j( 1
k )j .

Thus we have,

ln P

cn
. ln k

c
+ ln

(
1

rr(1− r)1−r

)
+ (1− r) ln

(
1− 1

k

)
+ r ln

1
k

=
ln k

c
+ h(r) + ln

(
1− 1

k

)
− r ln(k − 1), (3)

where h(α) = −α ln α− (1− α) ln(1− α) denotes the entropy function.
Letting r = 1

k − x (0 < x < 1
k ), and using the fact that,

h(r) = h(
1
k
− x) = h

(
1
k

)
− ln(k − 1)x− k2

k − 1
x2

2
− k3(k − 2)

(k − 1)2
x3

6
+ o(x3),
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Figure 2: Comparison of the upper bounds of fk(n, cn) obtained by Theorem B and Theorem 3

we get the following inequality by substituting it into Eq. (3),

ln P

cn
. ln k

c
− k2

k − 1
x2

2
− k3(k − 2)

(k − 1)2
x3

6
+ o(x3).

Let g(x) denotes the expression of the right side of the above inequality, then the roots of g(x) = 0 are as follows:

x1 = −
(

2cos
θ

3
+ 1

)
k − 1

k(k − 2)
,

x2 =
(

cos
θ

3
+
√

3sin
θ

3
− 1

)
k − 1

k(k − 2)
,

x3 =
(

cos
θ

3
−
√

3sin
θ

3
− 1

)
k − 1

k(k − 2)
,

θ = arccosT ∈ [0, π], T = 1− 3(k − 2)2

ck2(k − 1)
ln k.

Obviously, g(x) < 0 when x > x2. Therefore, P → 0 when n →∞, then

fk(n, cn) . (1− r)cn =
(

1− 1
k

+ x

)
cn,

fk(n, cn) .
(

1− 1
k

+ x2

)
cn =

(
1− 1

k
+

(
cos

θ

3
+
√

3sin
θ

3
− 1

)
k − 1

k(k − 2)

)
cn.

The lower bound of c can be obtained by requiring that x2 < 1
k , thus c has to satisfy the inequality sin( θ

3 + π
6 ) <

2k−3
2(k−1) .

Fig. 2 compares our results in Theorem 3 with previous result in Theorem B.

4. Conclusion

Presently, the method we use to improve the upper bound is restricted to the first moment method. Whether we
can exploit new methods is a big challenge, and is of great importance. We hope that with the new ways, other
than the first-moment method, to compute tighter upper bound of fcut(n, cn) and to find a batter critical point c0.
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