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Abstract

In this paper we study to solve the additive (ﬁl ,ﬁg)—functional inequality with n — variables and their Hyers-Ulam stability. First
are investigated in complex Banach spaces with a fixed point method and last are investigated in complex Banach spaces with a direct
method. I will show that the solutions of the additive (/31 , BZ) -functional inequality are additive mapping. Then Hyers — Ulam stability
of these equation are given and proven. T hese are the main results of this paper .
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1. Introduction

Let X and Y be normed spaces on the same field K, and f : X — Y. We use the notation H . H for all the
norms on both X and Y. In this paper, we investisgate additive ( B1, Bz)—functional inequality when X
is real or complex normed space and Y a complex Banach space. We solve and prove the Hyers-Ulam
stability of forllowing additive (B, B2)-functional inequality.

2f(x1 + x> +X3 —|—x4—|—...—i—xk> —f(xl) —f<x2+x3 +x4—|—...—|—xk> H
2 4 2
Y

+x4+...+ +x4+...+

< ﬁ1<f<X1+X2+x3 X42 Xk>+f(x1—xz—x3 X42 Xk>—2f(xl)>
Y

+x44+ ...+ +x4+...+

+ ﬁz(f(ﬁq-i-xz-l-x3 x42 xk)-f(xl)—f<x2+x3 x42 xk)) (D
Y

In which B, B, are fixed nonzero complex numbers with \/5’ B ‘ + ‘ ﬁz} < 1.

Note that in the preliminaries we just recap some of the most essential properties for the above problem
and for the specific problem, please see the document. The Hyers-Ulam stability was first investigated for
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functional equation of Ulam in [28] concerning the stability of group homomorphisms.

The functional equation

Flr+y) = () +10)
is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive
mapping.
The Hyers [13] gave first affirmative partial answer to the equation of Ulam in Banach spaces. After that,
Hyers’Theorem was generalized by Aoki[1] additive mappings and by Rassias [25] for linear mappings
considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by
Gavruta [10] by replacing an unbounded Cauchy difference with a general control function in the spirit of
Rassias’ approach.
The stability of quadratic functional equation was proved by Skof [27] for mappings f : X — Y , where X
is a normed space and Y is a Banach space. Park [24], [25] defined additive Y -functional inequalities
and proved the HyersUlam stability of the additive y -functional inequalities in Banach spaces and
nonArchimedean Banach spaces. The stability problems of various functional equations have been
extensively investigated by a number of authors on the world. We recall a fundamental result in fixed
point theory. Recently, in [3], [4], [21], [22], [24], [25] the authors studied the Hyers-Ulam stability for
the following functional inequalities

(5749 -1 (57) 5| < [ (550 +3) -5/ (557) -2/ g
(3 +3) -2/ (7)) 20 | < [ (F+9) -1 (F) -1 ®
1te) 760100 < o 21 (52) )~ 109)| @
21 (552) 100109 < [o(r ) 1) 10) 8

f<x+y+z> +f<)%—z

)~ (57) -0

2
< [ a5 () () -0)|
2 (5 +5) v (0 -5) (7)o
< [ (2 -9 -2 () -2100))

finaly
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muu+w+f@<»—wv»H

+

B (21 (F52) - 1) —f(y))” ®)
in complex Banach spaces

In this paper, we solve and proved the Hyers-Ulam stability for (B1 , ﬁz)—functional inequalities (1), ie the
([31 , [32) -functional inequalities with three variables. Under suitable assumptions on spaces X and Y, we
will prove that the mappings satisfy the ( Bi, [32) -functional inequatility (1). Thus, the results in this paper
are generalization of those in [3], [4], [14], [21] for (i, B,)-functional inequatilies with three variables.
The paper is organized as followns: In section preliminaries we remind some basic notations in [3], [7]
such as complete generalized metric space and Solutions of the inequalities.

Section 3: In this section, I use the method of the fixed to prove the Hyers-Ulam stability of the addive
(ﬁl , ﬁz)— functional inequalities (1) when X is a real or complete normed space and Y complex Banach
space.

Section 4: In this section, I use the method of directly determining the solution for (1) when X is a real or
complete normed space and Y complex Banach space.

2. preliminaries
2.1. Complete Generalized Metric space And Solutions of the Iinequalities

Theorem 1. Let (X ,d) be a complete generalized metric space and let J : X — X is a strictly contractive
mapping with Lipschitz constant L < 1. Then for each given element x € X, either

d(J",J") = e
for all nonegative integers n or there exists a positive integer ng such that

1. d(J",J") < oo, ¥n > no;

2. The sequence {J"x} converges to a fixed point y* of J;

3. y* is the unique fixed point of J in the set Y = {y € X|d(J”,J”+1) < 00};
4. d(y,y*) < {5d(y,Jy) Vy €Y

2.2. Solutions of the Inequalities.
The functional equation

flrty) =f(x) +10)

is called the cauchuy equation. In particular, every solution of the Cauchuy equation is said to be an
additive mapping.
3. Establish the Solution of the Additive ([31 , Bz)-Function Inequalities Using a Fixed Point Method

Now, we first study the solutions of (1). Note that for these inequalities, when X is a real or complete
normed space and Y complex Banach space.
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Lemma 2. A mapping f : X — Y satisfies f (0) =0and

X1+X2 X3+X4+...+Xk X3 +X4+ ...+ X,
e e ]
Y

<||B (f(xl +x2+x3+x4;m+xk> +f(x1 —Xz—x3+x4;“+xk) —2f(x1)> N
+ ﬁz(f(xl +x2+X3+X4—2|—W+Xk> —f(xl) _f<x2+x3+x4—;—...—i—xk)) . 9

forallx; € X,j=1— n, then f: X — Y is additive

Proof. Assume that f: X — Y satisfies (9)
Replacing (x1,...,x,) by (x,0,0...,0) in (9), we get

<0

Y

2(3) 119

and so 2f<§> = f(x) forall x € X.
Thus

) =409

for all x € X It follows from (9) and (10) that

X3+ ...+ Xp

x3—}—...—}—xn)
2

)= f(x1) = Fle+ >

Hf(lerx2+
Y
X3+ x4+... —|—xk>

=2
2

X1 +x x3+x4+...+x
f<122+3 44 k

)= £(e) — f (0t

Y

(1 s ey Y
(o f(x2+X3+X4;..+xk>>HY "
forall 1j € X, j = 1 — n and s0

(1_(ﬁZ])HﬂxlﬂﬁW)—ﬂxl)—f(mW) )
(1 ey Y "

Next we letting u = x; + x5 + w,v =X —Xx) — m in (12), we get
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(-l a5 o (45)

u+v>
2

S‘ﬁl‘

‘ Y

Flu) +£(v) =21

forall u,v € X
and so

%(1—\&\)”f<u+v>+f<u—v>—2f<u>

< |Bi]|| ) = £ () = £ ()

Y
for all u,v € X It follows from (12) and (14) that

5 (1-[eel)

‘ 2

X3+ ...+x,

x3—|—...—|—xn)
2

) 1)~ 2T

|f(x1+x2+
Y
X3+ ...+x,

X3+...+xn)
2

)~ £) ~ a2

S)&,‘f@1+x$+

Y

Since \/§‘B1’ + ’ﬁz‘ <1

and so

X3+ ...+ Xp
2

.forall x; € X, j =1 — n. Thus f is additive.

x3—|—...+xn)

f(xl +x2 + 5

) = xn) + f et

Theorem 3. Suppose ¢ : X" — [0,c0) be a function such that there exists an L < 1 with

¢(x1,x2,...,xn) §2L(p<X1 X2 xn>

E,E,...,?
forall x,y,z € X. If f: X — Y be a mapping satisfy f(O) =0and

2f( > 4 )_f(x‘)_f<x2+ 2

X1+X2 X3+X4+...+Xxk x3—|—x4—|—...+xk>H
Y

<||B1 (f(xl +x2+x3+x4;m+xk> +f(x1 —Xz—x3+x442rm+xk> —Zf(x1)> N
+ ﬁz(f(xl +x2+X3+X4;—W+Xk> —f(xl) _f<x2+x3+x4—2k...+xk)> ||Y

+ (P(xl X2, "'7xn)
forallx; € X,j=1—n.
Then there exists a unique mapping ¥ : X — Y such that

|70~ wix)| Smimm“a”m

Y

forall x € X

(13)

(14)

(15)

(16)

(A7)

(18)
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Proof. Replacing (xl,xz,...,xn) by (x,O,...,O) in (17), we get

2(3) 119

for all x € X.
Consider the set

< ¢(x,0,...,0) (19)

s:={h:X—=Y,n(0) =0}

and introduce the generalized metric on S:
d(g.h) =inf{1 eR: |g(x) ~h(x) | < A0 (x.0,..,0),¥x e X},
where, as usual, inf@ = +oo. It is easy to show that (S,d> is complete (see[16]) Now we cosider the

Jg(x) = 2g(§)

for all x € X. Let g,h € S be given such that d(g,h) = €. Then

g(x) —h(x)

linear mapping J : S — S such that

<e¢(x,0,...,0)

for all x € X.
Hence

Jg(x) —Jh(x)

2(3) - 2(3)

<2629(x,0,...,0) < Le(x,0,...0)

§2£(p<§,0,...,0>

for all x € X. So d(g,h) = & implies that d(Jg,Jh) < L-¢. This means that

d <Jg7Jh) <1d <g, h>

for all g,h € S It folows from (19) that

a(far) <.
By Theorem 1, there exists a mapping ¥ : X — Y satisfying the fllowing:
1. yis a fixed point of J, ie.,

v(x) =2y(3) (20)

for all x € X. The mapping v is a unique fixed point J in the set
M= {gGS:d(f,g) <<><>}

This implies that y is a unique mapping satisfying (20) such that there exists a A € (O, oo) satisfying

f(x) — l//(x) < 7Lq0(x,0,...,0)

forall x € X
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2.d (Jl f, l//) — 0 as [ — oo. This implies equality

in1(3) v

forall x € X
3, d( 7, y/) <Lla ( f,Jf). which implies
1
f(X) — W(X) < ﬁ(p(x,(), ,0)

for all x € X. It follows (16) and (17) that

2f<x1—|—x2+x3+x4+...+xk>_f(XI)_f<x2+x3+x4—|—...—|—xk>
2 4 2
Y
) X1+x2 x3+x4+...4+x, X1 X2 X3+x4+...4+x,
:,1152,2" 2f( on+1 n+2 )_f(ﬁ) _f(ﬁ on+1 )
Y
) n X1+x2 x3+x4+...+x, X1—X2 X3+x4+...+x, X1
< i 2 12 S 0 Sty
) n X1+x2 x3+x4+...+x, X1 X2 X3+Xx4+...+x,
Y
. X1 X2 Xn
X3+x4+...+x X3+x4+...+x
= 51<II/<X1+X2+ s 42 k>+1lf<X1—X2— s 42 k)—ZW(X1))
Y
X3+XxX4+...+x X3+XxX4+...+x
+ BZ("’<x1+x2+ — k>_"’(x1)_"’<x2+ — k>>H
Y
(21)
forallx; € X,j=1—n. So
2W<x1+x2 x3+x4—|—...+xk>_II/(XI)_W<x2+x3+x4+...+xk)
2 4 2
Y
X3+x4+...+x X3+x4+...+x
< Bl(ll/(x1+x2+ a 42 k>+1l/<x1—x2— s 42 k>—2llf(xl)>
Y
X3+Xx4+...+x X3+x4+...+x
* ﬁz("’<x1+x2+ — k>_"’(x1)_"'<x2+ — k)>H
Y

forall x; € X, j =1 — n. By Lemma 2, the mapping v : X — Y is additive. Ei

X3 +Xx4+ ...+ xp
2

W<X1+x2+ >—llf(x1)—lll<x2+

X3 +XxX4+ ...+ X
2

)=0
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Theorem 4. Suppose ¢ : X" — [O, oo) be a function such that there exists an L < 1 with

(xl X2 Xn

L
(0 373,---,3) < Efp(xl,xz,---,xn) (22)

forall x,y,z € X. If f: X — Y be a mapping satisfy f(O) =0and

X1+X2 X3+X4+...+Xk X3+X4+ ...+ X
e e e ]
Y

+x4+...+ +x4+...+
= X42 Xk>+f(x1—xz—x3 x42 xk)—zf(xl)>

ﬁz(f(xl by —i—x4—2k...+xk> —f(x) —f<x2+x3 +x442—...—i—xk>>

<

B (f(xl +x2 +

Y

+

Y
+ @ (x1,%2,...,%n) (23)

forallx; € X,j=1—n.
Then there exists a unique mapping ¥ : X — Y such that

Hf(x)—l//(x)HY§ (I_L)(p(x,O,...,O) (24)

for all x € X.

Proof. Replacing (xl,xz,...7xn) by (x,O,...,O) in (23), we get

< (x,0,...,0) (25)

21(2) 519

for all x € X.
So

<
Y

¢(2x,0,...,0) (26)

| =

1) - (29

for all x € X.
Suppose (S, d) be the generalized metric space defined in the proof of Theeorem 3.2 Now we cosider the

linear mapping J : S — S such that
1
Jg(x) = 5g(2x>

for all x € X. That It follows from (26)

(p(2x,0, ...,O) < L(p(x,O, ...,O)

| =

o)yt

Y

The rest of the proof is similar to proof of Theorem 3. ]

From proving the theorems we have consequences:
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Corollary 1. Let r > 1 and 6 be nonnegative real numbers and let f : X — Y be a mapping satisfy

£(0) =0and

(R ) f<x2+X3+X4;..+xk>HY

[ (o B (g BB Y
(ot f(x2+X3+X4;..+xk))||Y

0 (||| o]+ + ] ) 27)

forall x; € Xforall j=1— k.
Then there exists a unique mapping ¥ : X — Y such that

(28)

769 - v, < 55

’
X

Corollary 2. Let r < 1 and 6 be nonnegative real numbers and let f : X — Y be a mapping satisfy
f(0) =0and

- Fxg .t Fxgt ot
e RO
Y
X3+x4+...+x X3+x4+...+x

< 1B (1 (n o+ BT ) (- BT ) () ) )
n ﬁz(f(X1+XQ+X3+X4—2+_W+xk>—f(xl)—f(xZ+X3+X4;W+Xk)>H

r r r Y
—|—9<Hx1 +sz +...+ka ) (29)

forall x; € Xforall j=1— k.
Then there exists a unique mapping ¥ : X — Y such that

r

[0 -vw], <575

for all x € X.

(30)

X

X

4. Establish the Solution of the Additive ( B, [32) -Function Inequalities Using a Direct Method

Next, we study the solutions of (1) . Note that for these inequalities, when X be a real or complete normed
space and Y complex Banach space.

Theorem 5. Suppose ¢ : X" — [O, oo) be a function and let f : X — Y be a mapping such that

0 (x1,%2, .00, %) 1= 2f¢(x—1.,x—2.,...,x—”.) < oo 31)
=1
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and let f : X — Y be a mapping f(O) =0and

2f(x1+x2 X3+X4+...+xk)_f(XI)_f<x2+x3+x4+...+xk ||

4 2

+Xx4+ ...+ +X4+ ...+
< 31<f<X1+x2+x3 x42 xk>+f(xl—xz—x3 x42 xk)—2f(xl)>
Y
+x4+...+ +x4+...+
+ ﬁz(f(x1+xz+x3 x42 xk)-f(xl)—f<xz+x3 x42 xk))
Y

+ @ (x1,X2, .0, Xn) (32)
forallx; € X,j=1—n.
Then there exists a unique mapping ¥ : X — Y such that
lr@-v@], <o(x0,..,0 (33)
for all x € X.
Proof. Replacing (xl,xz,...,xn) by (x,O,...,O) in (32), we get

X

1275) -1 ()|, < @(xx,0....,0) (34)
forall x € X
. Hence

!

2r(3)-2i(3)|.

<% () -2 ()
2+l
Y
< Z 29(5777,0.:0) (35)

for all nonnegative integers m and / with m > [ and all x € X. It follows from (35) that the sequence
{2” f (;—,,) } is a Cauchy sequence for all x € X. Since Y is complete, the sequence {2” f (;—,,) } coverges.
So one can define the mapping y : X — Y by

w(x) == lim f<2" ) (36)

n—yoo 2N

for all x € X. Moreover, letting / = 0 and passing the limit m — oo in (36), we get (33) It follows from
(31) and (32) that
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2f

X1 +x2 X3—|—X4+...+xk X3 +Xx4+ ... +xp
( 4 )‘f(xl)_f<x2+ 2 )

Y

X1+x2 X3+X4+...+xn)

X1 X3+x4+...+x,
Zf( n+l on+2 )

— lim 2" )~ I ol

n—oo

£(

Y

X1 +x2 +X3 —}—X4—i—...+xn) —f(xl —X2 X3 +X4+...+Xn) —2f(x1)

on 2n+1 on 2n+1 E

n—soo

< lim 2"|B;| ‘f(

X1 +x2 x3—|—X4-l—...+xn)_f(x1 x3-|—X4+...—|—xn>

+ Jim 2°| o (5 2o A TR

Y

im Yo(XL X2 An
+ lim 2 (p(2n,2n,...,2n)

Bi (llf(xl +x2+x3+x4;"'+xk> +llf(x1 —xz—x3+x4;“+Xk> —2w(x1)>

Y

X3+XxX4+...+x X3+Xx4+...+x
B s PR )y B )

(37)
forallx; € X,j=1—n. So
21//<X1+X2+X3+X4+“.+Xk>—l[/(xl)—l//<)C2+XS+X4+W+Xk

2 4 2
X3+x4+...+x xX3+x4+...+x
o R )
Y
X3+Xx4+...+x X3+x4+...+x
o 2ty g ()

forall x; € X, j =1 — n. By Lemma 2, the mapping v : X — Y is additive. Ei

xXx3+x4+...+x X3+xa4+...+x
3 42 k>—llf(x1)—llf<x2+3 42 k):()

Now, let ¥’ : X — Y be another additive mapping satisfying (33). Then we have

v() -V ()| = 20w (5,) ~2v'(5;)

W<X1+XZ+

Y

2 (5) -2 (5)

+ 24

< |w(d) -2 (2)

gty (X >
<2 ¢>(2q,0,...,0

Y

which tends to zero as g — oo for all x € X. So we can conclude that y(x) = y/(x) for all x € X. This
proves the uniqueness of y. ]

Theorem 6. Suppose ¢ : X" — [(),oo) be a function and let f : X — Y be a mapping such that

© . . .
(p(xl,xz,...,xn) = Z E(p(2]x1,2]x2,...,2/xn> < oo (38)
j=1
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and let f : X — Y be a mapping f(O) =0and

2f(x1+x2 X3+ X4+ ...+ Xk X3 +X4+ ...+ X, ||

1 )—f(xl)—f<xz+ 5

+Xx4+ ...+ +X4+ ...+
< 31<f<X1+x2+x3 x42 xk>+f(xl—xz—x3 x42 xk)—2f(xl)>
Y
+x4+...+ +x4+...+
+ ﬁz(f(x1+xz+x3 x42 xk)-f(xl)—f<xz+x3 x42 xk))
Y
+ @ (x1,x2,0,%) (39)
forallx; € X,j=1—n.
Then there exists a unique mapping ¥ : X — Y such that
lr@-v@], <o(x0,..,0 (40)
for all x € X.
Proof. Replacing (xl,xz,...,xn) by (x,O,...,O) in (39), we get
X
|27G) - 1(W)||, < @(x0....,0) (1)
for all x € X. So
1 1
F) =3£(2)| < 50(2x0....0) (42)
Y
for all x € X. Hence
1 1 m
3 (24) = 31 (2"%)
Y
sk ' 1 j+1
Z 2/ () = 57 (27%)
j= Y
m—1 1 )
< ]z:“ 2—<p(2fx,o,...,0x) 43)

for all nonnegative integers m and / with m > [ and all x € X. It follows from (42) that the sequence
{zi,, f <2”x)} is a Cauchy sequence for all x € X. Since Y is complete, the sequence { = f <2” )}
coverges. So one can define the mapping v : X — Y by

w(x) == lim f<2" ) (44)

n—so0 QN

Moreover, letting / = 0 and passing the limit m — o in (42), we get (40).
The rest of the proof is similar to the proof of theorem 5. [

From proving the theorems we have consequences:
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Corollary 3. Let r > 1 and 6 be nonnegative real numbers and let f : X — Y be a mapping satisfy

£(0) =0and

p(E ) f(x2+X3+X4;..+xk)||Y

< |18 (f (w4 BT (g - BRI g () )

(s BB (g b Y

vo([u + el +- ) (45)

forallx; € X,j=1—k.
Then there exists a unique mapping ¥ : X — Y such that

769 - v, < 55 s

Corollary 4. Let r < 1 and 6 be nonnegative real numbers and let f : X — Y be a mapping satisfy

(46)

r
X

f(0) =0and

(B ey f<x2+X3+X4;_.+xk>HY

(o s BB R gy ) Y
(e ity f<x2+X3+X4;..+xk))||Y

o(|[si||"+[Jee]|"+ -+ [ ) (“7)

forallx; € X,j=1—k.
Then there exists a unique mapping ¥ : X — Y such that

[ -v@], <55

r

(48)

X

X

for all x € X.
5. Conclusion

In this paper, I have shown that the solutions of the ([31 , [32) -functional inequalities are additive mappings.
The Hyers-Ulam stability for these given from theorems. These are the main results of the paper , which
are the generalization of the results [3], [4], [14], [21].
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