

Global Journal of Mathematical Analysis, 10 (1) (2022) 7-20

Global Journal of Mathematical Analysis

Website: www.sciencepubco.com/index.php/GJMA

Research paper

Generalized Hyers-Ulam-Rassisa Stability of An Additive (β_1, β_2) -Functional Inequalities With n- Variables In Complex Banach Space

LY VAN AN

Faculty of Mathematics Teacher Education, Tay Ninh University, Ninh Trung, Ninh Son, Tay Ninh Province, Vietnam Email address lyvanan145@gmail.com.

Abstract

In this paper we study to solve the additive (β_1, β_2) -functional inequality with n- variables and their Hyers-Ulam stability. First are investigated in complex Banach spaces with a fixed point method and last are investigated in complex Banach spaces with a direct method. I will show that the solutions of the additive (β_1, β_2) -functional inequality are additive mapping. Then Hyers — Ulam stability of these equation are given and proven. These are the main results of this paper.

Keywords: Additive (β_1, β_2) -Functional Inequality; Fixed Point Method; Direct Method; Banach Space; Hyers – Ulam Stability. **Mathematics Subject Classification**: 46S10, 39B62, 39B52, 47H10,

1. Introduction

Let **X** and **Y** be normed spaces on the same field \mathbb{K} , and $f: \mathbf{X} \to \mathbf{Y}$. We use the notation $\|\cdot\|$ for all the norms on both **X** and **Y**. In this paper, we investisgate additive (β_1, β_2) -functional inequality when **X** is real or complex normed space and **Y** a complex Banach space. We solve and prove the Hyers-Ulam stability of forllowing additive (β_1, β_2) -functional inequality.

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$(1)$$

In which β_1 , β_2 are fixed nonzero complex numbers with $\sqrt{2}|\beta_1| + |\beta_2| < 1$.

Note that in the preliminaries we just recap some of the most essential properties for the above problem and for the specific problem, please see the document. The Hyers-Ulam stability was first investigated for

functional equation of Ulam in [28] concerning the stability of group homomorphisms.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The Hyers [13] gave first affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers'Theorem was generalized by Aoki[1] additive mappings and by Rassias [25] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Găvruta [10] by replacing an unbounded Cauchy difference with a general control function in the spirit of Rassias' approach.

The stability of quadratic functional equation was proved by Skof [27] for mappings $f: X \to Y$, where X is a normed space and Y is a Banach space. Park [24], [25] defined additive γ -functional inequalities and proved the HyersUlam stability of the additive γ -functional inequalities in Banach spaces and nonArchimedean Banach spaces. The stability problems of various functional equations have been extensively investigated by a number of authors on the world. We recall a fundamental result in fixed point theory. Recently, in [3], [4], [21], [22], [24], [25] the authors studied the Hyers-Ulam stability for the following functional inequalities

$$\left\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f(z) \right\| \le \left\| f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - \frac{1}{2}f\left(\frac{x+y}{2}\right) - \frac{1}{2}f(z) \right\|$$
 (2)

$$\left\| f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) - \frac{1}{2}f\left(\frac{x+y}{2}\right) - \frac{1}{2}f(z) \right\| \le \left\| f\left(\frac{x+y}{2} + z\right) - f\left(\frac{x+y}{2}\right) - f(z) \right\|$$
(3)

$$\left\| f(x+y) - f(x) - f(y) \right\| \le \left\| \rho \left(2f\left(\frac{x+y}{2}\right) - f(x) - f(y) \right) \right\| \tag{4}$$

$$\left\|2f\left(\frac{x+y}{2}\right) - f(x) - f(y)\right\| \le \left\|\rho\left(f(x+y) - f(x) - f(y)\right)\right\| \tag{5}$$

and

$$\left\| f\left(\frac{x+y}{2}+z\right) + f\left(\frac{x+y}{2}-z\right) - 2f\left(\frac{x+y}{2}\right) - 2f(z) \right\|$$

$$\leq \left\| \beta\left(2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z)\right) \right\|$$
(6)

$$\left\| 2f\left(\frac{x+y}{2^2} + \frac{z}{2}\right) + 2f\left(\frac{x+y}{2^2} - \frac{z}{2}\right) - f\left(\frac{x+y}{2}\right) - f(z) \right\|$$

$$\leq \left\| \beta\left(f\left(\frac{x+y}{2} + z\right) + f\left(\frac{x+y}{2} - z\right) - 2f\left(\frac{x+y}{2}\right) - 2f(z)\right) \right\|$$
(7)

finaly

$$\left\| f(x+y) - f(x) - f(y) \right\| \le \left\| \beta_1 \left(f(x+y) + f(x-y) - 2f(x) \right) \right\|$$

$$+ \left\| \beta_2 \left(2f \left(\frac{x+y}{2} \right) - f(x) - f(y) \right) \right\|$$
(8)

in complex Banach spaces

In this paper, we solve and proved the Hyers-Ulam stability for (β_1, β_2) -functional inequalities (1), ie the (β_1, β_2) -functional inequalities with three variables. Under suitable assumptions on spaces X and Y, we will prove that the mappings satisfy the (β_1, β_2) -functional inequatility (1). Thus, the results in this paper are generalization of those in [3], [4], [14], [21] for (β_1, β_2) -functional inequalities with three variables. The paper is organized as followns: In section preliminaries we remind some basic notations in [3], [7] such as complete generalized metric space and Solutions of the inequalities.

Section 3: In this section, I use the method of the fixed to prove the Hyers-Ulam stability of the addive (β_1, β_2) - functional inequalities (1) when X is a real or complete normed space and Y complex Banach space.

Section 4: In this section, I use the method of directly determining the solution for (1) when X is a real or complete normed space and Y complex Banach space.

2. preliminaries

2.1. Complete Generalized Metric space And Solutions of the Iinequalities

Theorem 1. Let (X,d) be a complete generalized metric space and let $J: X \to X$ is a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element $x \in X$, either

$$d(J^n,J^{n+1}) = \infty$$

for all nonegative integers n or there exists a positive integer n_0 such that

- 1. $d(J^n, J^{n+1}) < \infty, \forall n > n_0$;
- 2. The sequence $\{J^n x\}$ converges to a fixed point y^* of J;
- 3. y^* is the unique fixed point of J in the set $Y = \{y \in X | d(J^n, J^{n+1}) < \infty\};$
- 4. $d(y,y^*) \leq \frac{1}{1-l}d(y,Jy) \ \forall y \in Y$

2.2. Solutions of the Inequalities.

The functional equation

$$f(x+y) = f(x) + f(y)$$

is called the cauchuy equation. In particular, every solution of the Cauchuy equation is said to be an *additive mapping*.

3. Establish the Solution of the Additive (β_1, β_2) -Function Inequalities Using a Fixed Point Method

Now, we first study the solutions of (1). Note that for these inequalities, when X is a real or complete normed space and Y complex Banach space.

Lemma 2. A mapping $f: \mathbf{X} \to \mathbf{Y}$ satisfies f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$
(9)

for all $x_j \in \mathbf{X}$, $j = 1 \rightarrow n$, then $f : \mathbf{X} \rightarrow \mathbf{Y}$ is additive

Proof. Assume that $f : \mathbf{X} \to \mathbf{Y}$ satisfies (9) Replacing $(x_1, ..., x_n)$ by (x, 0, 0, ..., 0) in (9), we get

$$\left\| 2f\left(\frac{x}{2}\right) - f\left(x\right) \right\|_{\mathbf{Y}} \le 0$$

and so $2f\left(\frac{x}{2}\right) = f(x)$ for all $x \in \mathbf{X}$.

Thus

$$f\left(\frac{x}{2}\right) = \frac{1}{2}f\left(x\right) \tag{10}$$

for all $x \in \mathbf{X}$ It follows from (9) and (10) that

$$\left\| f\left(x_{1} + x_{2} + \frac{x_{3} + \dots + x_{n}}{2}\right) - f\left(x_{1}\right) - f\left(x_{2} + \frac{x_{3} + \dots + x_{n}}{2}\right) \right\|_{\mathbf{Y}}$$

$$= \left\| 2f\left(\frac{x_{1} + x_{2}}{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{4}\right) - f\left(x_{1}\right) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) + f\left(x_{1} - x_{2} - \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - 2f\left(x_{1}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - f\left(x_{1}\right) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$(11)$$

for all $x_j \in \mathbf{X}, j = 1 \rightarrow n$ and so

$$\left(1 - \left|\beta_{2}\right|\right) \left\| f\left(x_{1} + x_{2} + \frac{x_{3} + \dots + x_{n}}{2}\right) - f\left(x_{1}\right) - f\left(x_{2} + \frac{x_{3} + \dots + x_{n}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1} \left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) + f\left(x_{1} - x_{2} - \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - 2f\left(x_{1}\right) \right) \right\|_{\mathbf{Y}} \tag{12}$$

Next we letting $u = x_1 + x_2 + \frac{x_3 + \dots + x_n}{2}$, $v = x_1 - x_2 - \frac{x_3 + x_4 + \dots + x_k}{2}$ in (12), we get

$$\left(1 - \left|\beta_{2}\right|\right) \left\|f(u) - f\left(\frac{u+v}{2}\right) - f\left(\frac{u-v}{2}\right)\right\|_{\mathbf{Y}}$$

$$\leq \left|\beta_{1}\right| \left\|f(u) + f(v) - 2f\left(\frac{u+v}{2}\right)\right\|_{\mathbf{Y}}$$
(13)

for all $u, v \in \mathbf{X}$ and so

$$\frac{1}{2}\left(1-\left|\beta_{2}\right|\right)\left\|f(u+v)+f(u-v)-2f(u)\right\|_{\mathbf{Y}}$$

$$\leq\left|\beta_{1}\right|\left\|f(u+v)-f(u)-f(v)\right\|_{\mathbf{Y}}$$
(14)

for all $u, v \in \mathbf{X}$ It follows from (12) and (14) that

$$\frac{1}{2} \left(1 - \left| \beta_2 \right| \right)^2 \left\| f\left(x_1 + x_2 + \frac{x_3 + \dots + x_n}{2} \right) - f\left(x_1 \right) - f\left(x_2 + \frac{x_3 + \dots + x_n}{2} \right) \right\|_{\mathbf{Y}}$$

$$\leq \left| \beta_1 \right|^2 \left\| f\left(x_1 + x_2 + \frac{x_3 + \dots + x_n}{2} \right) - f\left(x_1 \right) - f\left(x_2 + \frac{x_3 + \dots + x_n}{2} \right) \right\|_{\mathbf{Y}} \tag{15}$$

Since $\sqrt{2}\left|\beta_1\right| + \left|\beta_2\right| < 1$

$$f(x_1 + x_2 + \frac{x_3 + \dots + x_n}{2}) = f(x_1) + f(x_2 + \frac{x_3 + \dots + x_n}{2})$$

. for all $x_j \in \mathbf{X}$, $j = 1 \rightarrow n$. Thus f is additive.

Theorem 3. Suppose $\varphi: \mathbf{X}^n \to [0, \infty)$ be a function such that there exists an L < 1 with

$$\varphi(x_1, x_2, ..., x_n) \le 2L\varphi\left(\frac{x_1}{2}, \frac{x_2}{2}, ..., \frac{x_n}{2}\right)$$
 (16)

for all $x, y, z \in \mathbf{X}$. If $f : \mathbf{X} \to \mathbf{Y}$ be a mapping satisfy f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \varphi\left(x_{1},x_{2},\ldots,x_{n}\right)$$

$$(17)$$

for all $x_j \in \mathbf{X}, j = 1 \rightarrow n$.

Then there exists a unique mapping $\psi : \mathbf{X} \to \mathbf{Y}$ such that

$$||f(x) - \psi(x)||_{\mathbb{Y}} \le \frac{1}{(1-L)} \varphi(x,0,...,0)$$
 (18)

for all $x \in \mathbf{X}$

Proof. Replacing $(x_1, x_2, ..., x_n)$ by (x, 0, ..., 0) in (17), we get

$$\left\| 2f\left(\frac{x}{2}\right) - f(x) \right\|_{\mathbb{Y}} \le \varphi(x, 0, ..., 0) \tag{19}$$

for all $x \in \mathbf{X}$.

Consider the set

$$\mathbb{S} := \left\{ h : \mathbf{X} \to \mathbf{Y}, h(0) = 0 \right\}$$

and introduce the generalized metric on S:

$$d(g,h) := \inf \left\{ \lambda \in \mathbb{R} : \left\| g(x) - h(x) \right\| \le \lambda \varphi(x,0,...,0), \forall x \in \mathbf{X} \right\},\,$$

where, as usual, $inf \phi = +\infty$. It is easy to show that (\mathbb{S}, d) is complete (see[16]) Now we cosider the linear mapping $J : \mathbb{S} \to \mathbb{S}$ such that

$$Jg(x) := 2g\left(\frac{x}{2}\right)$$

for all $x \in \mathbf{X}$. Let $g, h \in \mathbb{S}$ be given such that $d(g, h) = \varepsilon$. Then

$$\left\|g(x)-h(x)\right\|\leq \varepsilon \varphi(x,0,...,0)$$

for all $x \in \mathbf{X}$.

Hence

$$\left\| Jg(x) - Jh(x) \right\| = \left\| 2g\left(\frac{x}{2}\right) - 2hf\left(\frac{x}{2}\right) \right\| \le 2\varepsilon\varphi\left(\frac{x}{2}, 0, ..., 0\right)$$
$$\le 2\varepsilon\frac{L}{2}\varphi(x, 0, ..., 0) \le L\varepsilon\varphi(x, 0, ..., 0)$$

for all $x \in \mathbf{X}$. So $d(g,h) = \varepsilon$ implies that $d(Jg,Jh) \leq L \cdot \varepsilon$. This means that

$$d(Jg,Jh) \leq Ld(g,h)$$

for all $g, h \in \mathbb{S}$ It follows from (19) that

$$d(f,Jf) \leq 1.$$

By Theorem 1, there exists a mapping $\psi : \mathbf{X} \to \mathbf{Y}$ satisfying the fllowing:

1. ψ is a fixed point of J, ie.,

$$\psi(x) = 2\psi\left(\frac{x}{2}\right) \tag{20}$$

for all $x \in \mathbf{X}$. The mapping ψ is a unique fixed point J in the set

$$\mathbb{M} = \left\{ g \in \mathbb{S} : d\left(f, g\right) < \infty \right\}$$

This implies that ψ is a unique mapping satisfying (20) such that there exists a $\lambda \in (0, \infty)$ satisfying

$$\left\| f(x) - \psi(x) \right\| \leq \lambda \varphi(x,0,...,0)$$

for all $x \in \mathbf{X}$

2. $d(J^l f, \psi) \to 0$ as $l \to \infty$. This implies equality

$$\lim_{l\to\infty}2^nf\left(\frac{x}{2^n}\right)=\psi(x)$$

for all $x \in \mathbb{X}$ 3. $d(f, \psi) \le \frac{1}{1-L}d(f, Jf)$. which implies

$$\left\| f(x) - \psi(x) \right\| \leq \frac{1}{1 - L} \varphi(x, 0, ..., 0)$$

for all $x \in X$. It follows (16) and (17) that

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$= \lim_{n \to \infty} 2^{n} \left\| 2f\left(\frac{x_{1}+x_{2}}{2^{n+1}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+2}}\right) - f\left(\frac{x_{1}}{2^{n}}\right) - f\left(\frac{x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) \right\|_{\mathbf{Y}}$$

$$\leq \lim_{n \to \infty} 2^{n} \left| \beta_{1} \right| \left\| f\left(\frac{x_{1}+x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) - f\left(\frac{x_{1}-x_{2}}{2^{n}} - \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) - 2f\left(\frac{x_{1}}{2^{n}}\right) \right\|_{\mathbf{Y}}$$

$$+ \lim_{n \to \infty} 2^{n} \left| \beta_{2} \right| \left\| f\left(\frac{x_{1}+x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) - f\left(\frac{x_{1}}{2^{n}}\right) - f\left(\frac{x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) \right\|_{\mathbf{Y}}$$

$$+ \lim_{n \to \infty} 2^{n} \varphi\left(\frac{x_{1}}{2^{n}}, \frac{x_{2}}{2^{n}}, \ldots, \frac{x_{n}}{2^{n}}\right)$$

$$= \left\| \beta_{1} \left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + \psi\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2\psi(x_{1}) \right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2} \left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - \psi(x_{1}) - \psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right) \right\|_{\mathbf{Y}}$$

$$(21)$$

for all $x_j \in \mathbf{X}, j = 1 \rightarrow n$. So

$$\left\| 2\psi\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - \psi(x_{1}) - \psi\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(\psi\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + \psi\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2\psi(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(\psi\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - \psi(x_{1}) - \psi\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

for all $x_j \in \mathbf{X}$, $j = 1 \to n$. By Lemma 2, the mapping $\psi : \mathbf{X} \to \mathbf{Y}$ is additive. Ei

$$\psi\left(x_1 + x_2 + \frac{x_3 + x_4 + \dots + x_k}{2}\right) - \psi\left(x_1\right) - \psi\left(x_2 + \frac{x_3 + x_4 + \dots + x_k}{2}\right) = 0$$

Theorem 4. Suppose $\varphi: \mathbf{X}^n \to [0,\infty)$ be a function such that there exists an L < 1 with

$$\varphi\left(\frac{x_1}{2}, \frac{x_2}{2}, ..., \frac{x_n}{2}\right) \le \frac{L}{2}\varphi(x_1, x_2, ..., x_n)$$
(22)

for all $x, y, z \in \mathbf{X}$. If $f : \mathbf{X} \to \mathbf{Y}$ be a mapping satisfy f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1} + x_{2}}{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) + f\left(x_{1} - x_{2} - \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \varphi\left(x_{1}, x_{2}, \dots, x_{n}\right) \tag{23}$$

for all $x_j \in \mathbf{X}, j = 1 \rightarrow n$.

Then there exists a unique mapping $\psi : \mathbf{X} \to \mathbf{Y}$ such that

$$||f(x) - \psi(x)||_{\mathbf{Y}} \le \frac{L}{(1-L)} \varphi(x,0,...,0)$$
 (24)

for all $x \in \mathbf{X}$.

Proof. Replacing $(x_1, x_2, ..., x_n)$ by (x, 0, ..., 0) in (23), we get

$$\left\| 2f\left(\frac{x}{2}\right) - f(x) \right\|_{\mathbf{Y}} \le \varphi(x, 0, \dots, 0) \tag{25}$$

for all $x \in \mathbf{X}$.

So

$$\left\| f(x) - \frac{1}{2}f(2x) \right\|_{\mathbf{Y}} \le \frac{1}{2}\varphi(2x, 0, ..., 0)$$
 (26)

for all $x \in \mathbf{X}$.

Suppose (\mathbb{S},d) be the generalized metric space defined in the proof of Theorem 3.2 Now we cosider the linear mapping $J: \mathbb{S} \to \mathbb{S}$ such that

$$Jg(x) := \frac{1}{2}g(2x)$$

for all $x \in \mathbf{X}$. That It follows from (26)

$$\left\| f(x) - \frac{1}{2} f(2x) \right\|_{\mathbf{V}} \le \frac{1}{2} \varphi(2x, 0, ..., 0) \le L \varphi(x, 0, ..., 0)$$

The rest of the proof is similar to proof of Theorem 3.

From proving the theorems we have consequences:

Corollary 1. Let r > 1 and θ be nonnegative real numbers and let $f : \mathbf{X} \to \mathbf{Y}$ be a mapping satisfy f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \theta\left(\left\|x_{1}\right\|^{r} + \left\|x_{2}\right\|^{r} + \ldots + \left\|x_{k}\right\|^{r}\right) \tag{27}$$

for all $x_i \in \mathbf{X}$ for all $j = 1 \rightarrow k$.

Then there exists a unique mapping $\psi : \mathbf{X} \to \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\|_{\mathbf{Y}} \le \frac{2^r \theta}{2^r - 2} \left\| x \right\|_{\mathbf{X}}^r \tag{28}$$

for all $x \in \mathbf{X}$.

Corollary 2. Let r < 1 and θ be nonnegative real numbers and let $f : \mathbf{X} \to \mathbf{Y}$ be a mapping satisfy f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1} + x_{2}}{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) + f\left(x_{1} - x_{2} - \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \theta\left(\left\|x_{1}\right\|^{r} + \left\|x_{2}\right\|^{r} + \dots + \left\|x_{k}\right\|^{r}\right) \tag{29}$$

for all $x_j \in \mathbf{X}$ for all $j = 1 \to k$.

Then there exists a unique mapping $\psi : \mathbf{X} \to \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\|_{\mathbf{Y}} \le \frac{2^r \theta}{2 - 2^r} \left\| x \right\|_{\mathbf{X}}^r \tag{30}$$

for all $x \in \mathbf{X}$.

4. Establish the Solution of the Additive (β_1, β_2) -Function Inequalities Using a Direct Method

Next, we study the solutions of (1). Note that for these inequalities, when \mathbf{X} be a real or complete normed space and \mathbf{Y} complex Banach space.

Theorem 5. Suppose $\varphi: \mathbf{X}^n \to [0,\infty)$ be a function and let $f: \mathbf{X} \to \mathbf{Y}$ be a mapping such that

$$\phi(x_1, x_2, ..., x_n) := \sum_{j=1}^{\infty} 2^j \phi\left(\frac{x_1}{2^j}, \frac{x_2}{2^j}, ..., \frac{x_n}{2^j}\right) < \infty$$
(31)

and let $f: \mathbf{X} \to \mathbf{Y}$ be a mapping f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \varphi\left(x_{1},x_{2},\ldots,x_{n}\right) \tag{32}$$

for all $x_j \in \mathbf{X}$, $j = 1 \rightarrow n$.

Then there exists a unique mapping $\psi: \mathbf{X} \to \mathbf{Y}$ such that

$$||f(x) - \psi(x)||_{\mathbf{V}} \le \varphi(x, 0, ..., 0)$$
 (33)

for all $x \in \mathbf{X}$.

Proof. Replacing $(x_1, x_2, ..., x_n)$ by (x, 0, ..., 0) in (32), we get

$$\left\| 2f\left(\frac{x}{2}\right) - f(x) \right\|_{\mathbf{Y}} \le \varphi(x, x, 0, ..., 0)$$
 (34)

for all $x \in X$

. Hence

$$\left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\|_{\mathbf{Y}}$$

$$\leq \sum_{j=l}^{m-1} \left\| 2^{j} f\left(\frac{x}{2^{j}}\right) - 2^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|_{\mathbf{Y}}$$

$$\leq \sum_{j=l}^{m-1} 2^{j} \varphi\left(\frac{x}{2^{j+1}}, 0, ..., 0\right)$$
(35)

for all nonnegative integers m and l with m > l and all $x \in \mathbf{X}$. It follows from (35) that the sequence $\left\{2^n f\left(\frac{x}{2^n}\right)\right\}$ is a Cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{2^n f\left(\frac{x}{2^n}\right)\right\}$ coverges. So one can define the mapping $\boldsymbol{\psi}: \mathbf{X} \to \mathbf{Y}$ by

$$\psi(x) := \lim_{n \to \infty} \frac{1}{2^n} f\left(2^n x\right) \tag{36}$$

for all $x \in \mathbf{X}$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (36), we get (33) It follows from (31) and (32) that

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$= \lim_{n \to \infty} 2^{n} \left\| 2f\left(\frac{x_{1}+x_{2}}{2^{n+1}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+2}}\right) - f\left(\frac{x_{1}}{2^{n}}\right) - f\left(\frac{x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) \right\|_{\mathbf{Y}}$$

$$\leq \lim_{n \to \infty} 2^{n} |\beta_{1}| \left\| f\left(\frac{x_{1}+x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) - f\left(\frac{x_{1}-x_{2}}{2^{n}} - \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) - 2f\left(\frac{x_{1}}{2^{n}}\right) \right\|_{\mathbf{Y}}$$

$$+ \lim_{n \to \infty} 2^{n} |\beta_{2}| \left\| f\left(\frac{x_{1}+x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) - f\left(\frac{x_{1}}{2^{n}}\right) - f\left(\frac{x_{2}}{2^{n}} + \frac{x_{3}+x_{4}+\ldots+x_{n}}{2^{n+1}}\right) \right\|_{\mathbf{Y}}$$

$$+ \lim_{n \to \infty} 2^{n} \varphi\left(\frac{x_{1}}{2^{n}}, \frac{x_{2}}{2^{n}}, \ldots, \frac{x_{n}}{2^{n}}\right)$$

$$= \left\| \beta_{1} \left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + \psi\left(x_{1}-x_{2}-\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2\psi(x_{1}) \right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2} \left(\psi\left(x_{1}+x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - \psi(x_{1}) - \psi\left(x_{2}+\frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right) \right\|_{\mathbf{Y}}$$

$$(37)$$

for all $x_j \in \mathbf{X}, j = 1 \rightarrow n$. So

$$\left\| 2\psi \left(\frac{x_{1} + x_{2}}{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{4} \right) - \psi(x_{1}) - \psi(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1} \left(\psi \left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2} \right) + \psi \left(x_{1} - x_{2} - \frac{x_{3} + x_{4} + \dots + x_{k}}{2} \right) - 2\psi(x_{1}) \right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2} \left(\psi \left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2} \right) - \psi(x_{1}) - \psi \left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2} \right) \right) \right\|_{\mathbf{Y}}$$

for all $x_j \in \mathbf{X}, j = 1 \to n$. By Lemma 2, the mapping $\psi : \mathbf{X} \to \mathbf{Y}$ is additive. Ei

$$\psi\left(x_1+x_2+\frac{x_3+x_4+\ldots+x_k}{2}\right)-\psi\left(x_1\right)-\psi\left(x_2+\frac{x_3+x_4+\ldots+x_k}{2}\right)=0$$

Now, let $\psi': \mathbb{X} \to \mathbb{Y}$ be another additive mapping satisfying (33). Then we have

$$\begin{aligned} \left\| \psi(x) - \psi'(x) \right\| &= \left\| 2^{q} \psi(\frac{x}{2^{q}}) - 2^{q} \psi'(\frac{x}{2^{q}}) \right\|_{\mathbb{Y}} \\ &\leq \left\| 2^{q} \psi(\frac{x}{2^{q}}) - 2^{q} f(\frac{x}{2^{q}}) \right\| + \left\| 2^{q} \psi'(\frac{x}{2^{q}}) - 2^{q} f(\frac{x}{2^{q}}) \right\|_{\mathbb{Y}} \\ &\leq 2^{q+1} \phi\left(\frac{x}{2^{q}}, 0, ..., 0\right) \end{aligned}$$

which tends to zero as $q \to \infty$ for all $x \in \mathbf{X}$. So we can conclude that $\psi(x) = \psi'(x)$ for all $x \in \mathbf{X}$. This proves the uniqueness of ψ .

Theorem 6. Suppose $\varphi: \mathbf{X}^n \to [0,\infty)$ be a function and let $f: \mathbf{X} \to \mathbf{Y}$ be a mapping such that

$$\phi(x_1, x_2, ..., x_n) := \sum_{j=1}^{\infty} \frac{1}{2^j} \varphi(2^j x_1, 2^j x_2, ..., 2^j x_n) < \infty$$
(38)

and let $f: \mathbf{X} \to \mathbf{Y}$ be a mapping f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \varphi\left(x_{1},x_{2},\ldots,x_{n}\right) \tag{39}$$

for all $x_j \in \mathbf{X}$, $j = 1 \rightarrow n$.

Then there exists a unique mapping $\psi: \mathbf{X} \to \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\|_{\mathbf{V}} \le \varphi(x, 0, \dots, 0) \tag{40}$$

for all $x \in \mathbf{X}$.

Proof. Replacing $(x_1, x_2, ..., x_n)$ by (x, 0, ..., 0) in (39), we get

$$\left\| 2f\left(\frac{x}{2}\right) - f(x) \right\|_{\mathbf{Y}} \le \varphi(x, 0, ..., 0)$$
 (41)

for all $x \in X$. So

$$\left\| f(x) - \frac{1}{2} f(2x) \right\|_{\mathbf{Y}} \le \frac{1}{2} \varphi(2x, 0, ..., 0)$$
(42)

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{l}} f\left(2^{l} x\right) - \frac{1}{2^{m}} f\left(2^{m} x\right) \right\|_{\mathbb{Y}}$$

$$\leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^{j}} f\left(2^{j} x\right) - \frac{1}{2^{j+1}} f\left(2^{j+1} x\right) \right\|_{\mathbb{Y}}$$

$$\leq \sum_{j=l}^{m-1} \frac{1}{2^{j+1}} \varphi\left(2^{j} x, 0, ..., 0x\right)$$
(43)

for all nonnegative integers m and l with m > l and all $x \in \mathbf{X}$. It follows from (42) that the sequence $\left\{\frac{1}{2^n}f\left(2^nx\right)\right\}$ is a Cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{\frac{1}{2^n}f\left(2^nx\right)\right\}$ coverges. So one can define the mapping $\psi: \mathbf{X} \to \mathbf{Y}$ by

$$\psi(x) := \lim_{n \to \infty} \frac{1}{2^n} f\left(2^n x\right) \tag{44}$$

Moreover, letting l = 0 and passing the limit $m \to \infty$ in (42), we get (40). The rest of the proof is similar to the proof of theorem 5.

From proving the theorems we have consequences:

Corollary 3. Let r > 1 and θ be nonnegative real numbers and let $f : \mathbf{X} \to \mathbf{Y}$ be a mapping satisfy f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1}+x_{2}}{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) + f\left(x_{1}-x_{2} - \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1}+x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3}+x_{4}+\ldots+x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$+ \theta\left(\left\|x_{1}\right\|^{r} + \left\|x_{2}\right\|^{r} + \ldots + \left\|x_{n}\right\|^{r}\right) \tag{45}$$

for all $x_i \in \mathbf{X}$, $j = 1 \rightarrow k$.

Then there exists a unique mapping $\psi : \mathbf{X} \to \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\|_{\mathbf{Y}} \le \frac{2^r \theta}{2^r - 2} \left\| x \right\|_{\mathbf{X}}^r \tag{46}$$

Corollary 4. Let r < 1 and θ be nonnegative real numbers and let $f : \mathbf{X} \to \mathbf{Y}$ be a mapping satisfy f(0) = 0 and

$$\left\| 2f\left(\frac{x_{1} + x_{2}}{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{4}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) \right\|_{\mathbf{Y}}$$

$$\leq \left\| \beta_{1}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) + f\left(x_{1} - x_{2} - \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - 2f(x_{1})\right) \right\|_{\mathbf{Y}}$$

$$+ \left\| \beta_{2}\left(f\left(x_{1} + x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right) - f(x_{1}) - f\left(x_{2} + \frac{x_{3} + x_{4} + \dots + x_{k}}{2}\right)\right) \right\|_{\mathbf{Y}}$$

$$\theta\left(\left\|x_{1}\right\|^{r} + \left\|x_{2}\right\|^{r} + \dots + \left\|x_{n}\right\|^{r}\right) \tag{47}$$

for all $x_i \in \mathbb{X}$, $j = 1 \rightarrow k$.

Then there exists a unique mapping $\psi : \mathbf{X} \to \mathbf{Y}$ such that

$$\left\| f(x) - \psi(x) \right\|_{\mathbb{Y}} \le \frac{2^r \theta}{2 - 2^r} \left\| x \right\|_{\mathbf{X}}^r \tag{48}$$

for all $x \in \mathbf{X}$.

5. Conclusion

In this paper, I have shown that the solutions of the (β_1, β_2) -functional inequalities are additive mappings. The Hyers-Ulam stability for these given from theorems. These are the main results of the paper, which are the generalization of the results [3], [4], [14], [21].

References

- [1] T.Aoki, On the stability of the linear transformation in Banach space, J. Math. Soc. Japan 2(1950), 64-66.
- [2] A.Bahyrycz, M. Piszczek, Hyers stability of the Jensen function equation, *Acta Math. Hungar*.,142 (2014),353-365.
- [3] Ly Van An, Hyers-Ulam stability of functional inequalities with three variable in Banach spaces and Non-Archemdean Banach spaces *International Journal of Mathematical Analysis* Vol.13, 2019, no. 11. 519-53014), 296-310..https://doi.org/10.12988/ijma.2019.9954.
- [4] Ly Van An, Hyers-Ulam stability of β-functional inequalities with three variable in non-Archemdean Banach spaces and complex Banach spaces International Journal of Mathematical Analysis Vol. 14, 2020, no. 5, 219 239 .HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijma.2020.91169. https://doi.org/10.12988/ijma.2019.9954.

- [5] M.Balcerowski, On the functional equations related to a problem of z Boros and Z. Dróczy, Acta Math. Hungar., 138 (2013), 329-340.
- [6] L. CADARIU?, V. RADU, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
- [7] J. DIAZ, B. MARGOLIS, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc. 74 (1968), 305-309.
- [8] W Fechner, On some functional inequalities related to the logarithmic mean, Acta Math., Hungar., 128 (2010,)31-45, 303-309.
- [9] W. Fechner, Stability of a functional inequlities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.
- [10] Pascus. Găvruta, A generalization of the Hyers-Ulam -Rassias stability of approximately additive mappings, *Journal of mathematical Analysis and Aequations* 184 (3) (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211.
- Attila Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710.
- Attila Gilányi, Eine zur parallelogrammleichung äquivalente ungleichung, Aequations 5 (2002),707-710. https://doi.org/10.7153/mia-05-71.
- [13] Donald H. Hyers, On the stability of the functional equation, Proceedings of the National Academy of the United States of America, 27 (4) (1941), 222.https://doi.org/10.1073/pnas.27.4.222
- [14] Jung Rye Lee, Choonkil Park, and Dong Yun Shin. Additive and quadratic functional in equalities in Non-Archimedean normed spaces, International
- Journal of Mathematical Analysis, 8 (2014), 1233-1247. https://doi.org/10.12988/ijma.2019.9954.
 [15] L.Maligranda.Tosio Aoki (1910-1989). International symposium on Banach and function spaces:14/09/2006-17/09/2006, pages 1–23. Yokohama
- Publishers, 2008.

 D. MIHET, V. RADU, On the stability of the additive Cauchy functional equation in random normed spaces, *J. Math. Anal. Appl.* 343 (2008), 567-572.

 A.Najati and G. Z. Eskandani. Stability of a mixed additive and cubic functional equation in quasi-Banach spaces. *J. Math. Anal. Appl.*, 342(2):1318–1331,
- C.Park, Y. Cho, M.Han. Functional inequalities associated with Jordan-von Newman-type additive functional equations, J. Inequality .Appl. ,2007(2007), Article ID 41820, 13 pages.
- W. P and J. Schwaiger, A system of two in homogeneous linear functional equations, Acta Math. Hungar 140 (2013), 377-406
- Jürg Rätz On inequalities assosciated with the jordan-von neumann functional equation, Aeguationes matheaticae, 66 (1) (2003), 191-200 https:// doi.org/10-1007/s00010-0032684-8.
- [21] Choonkil. Park. The stability an of additive (β_1, β_2) -functional inequality in Banach space Journal of mathematical Inequalities Volume 13, Number 1 (2019), 95-104.
- [22] Choonkil. Park. Additive β-functional inequalities, Journal of Nonlinear Science and Appl. 7(2014), 296-310.
- Choonkil Park, functional in equalities in Non-Archimedean normed spaces. Acta Mathematica Sinica, English Series, 31 (3), (2015), 353-366. https://doi.org/10.1007/s10114-015-4278-5.

- [24] C. PARK, Additive ρ-functional inequalities and equations, J. Math. Inequal. 9 (2015), 17-26.
 [25] C. PARK, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015), 397-407.
 [26] Themistocles M. Rassias, On the stability of the linear mapping in Banach space, proceedings of the American Mathematical Society, 27 (1978), 297-300. https://doi.org/10.2307/s00010-003-2684-8.
- [27] F. SKOF, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983),113-129.
 [28] S. M. ULam. A collection of Mathematical problems, volume 8, Interscience Publishers. New York, 1960. Corresponding Author: Ly Van An.