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Abstract
In the present paper we are concerned with Z-statistically pre-Cauchy double sequences in line of of Das et al. [5].
Particularly, we prove that for double sequences, Z-statistical convergence implies Z-statistical pre-Cauchy condition

and examine some main properties of these concepts.
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1. Introduction and preliminaries

The notion of statistical convergence of sequences of real numbers was introduced by Fast in [6] and Steinhaus
in [25] and is based on the notion of asymptotic density of a set A C N. However, the first idea of statistical
convergence appeared (under the name almost convergence) in the first edition (Warsaw, 1935) of the celebrated
monograph [28] of Zygmund. It should be also mentioned that the notion of statistical convergence has been
considered, in other contexts [8, 11, 14, 18, 22]. Statistical convergence has several applications in different fields of
mathematics: summability theory [4, 23], trigonometric series [28], measure theory [17], and approximation theory
[14]. Particularly, in [2], Connor et al. introduced the concept of statistically pre-Cauchy sequences and proved that
statistically convergent sequences are always statistically pre-Cauchy and on the other hand under certain general
conditions statistical pre-Cauchy condition implies statistical convergence of a sequence. Giirdal [10] presented
statistically pre-Cauchy sequences and bounded moduli.

The idea of Z-convergence for sequences, was inspired by the concept of statistical convergence introduced in
[16], see Kostyrko, Saldt, and Wilczyriski [16] for a comprehensive bibliography. All the results of [16] apply to
sequences of functions with domains being singletons. Recently, in [4, 21], Savas et al. studied the Z-statistically
convergence of sequences and obtained some results of this concept. For more informations about Z-convergence
and Z-statistically convergence, see [6, 5, 12, 15, 19, 20, 24, 27].

The notion of Z-statistically pre-Cauchy of double sequences has not been studied previously. Motivated by this
fact, in this paper, we are concerned with Z-statistically pre-Cauchy double sequences, and some important results
are established.

Now we recall some definitions and notations that will be used in paper.

The notion of a statistically convergent sequence can be defined using the asymptotic density of subsets of the
set of positive integers N ={1,2,...} . For any K C N and n € N we denote K (n) := cardK N{1,2,...,n} and we
define lower and upper asymptotic density of the set K by the formulas

I(K):= limian (n)7 0(K) := limsupm.

- n—o0 n n—oo n
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If §(K) = 6(K) =: 6(K), then the common value §(K) is called the asymptotic density of the set K and

5(K) = lim 2.

n— o0 n

Obviously all three densities §(K), §(K) and §(K) (if they exist) lie in the unit interval [0, 1].

1 1
0 (K) = lim — | K| =Tim =~ “xrc (k)
k=1

if it exists, where x is the characteristic function of the set K [7]. We say that a number sequence x = (z4), oy
statistically converges to a point L if for each ¢ > 0 we have ¢ (K (¢)) = 0, where K (¢) = {k € N: |z, — L| > ¢}
and in such situation we will write L = st-lim x.

Statistical convergence for double sequences x = (1) of real numbers was introduced and studied by Mursaleen
and Edely [18].

A real double sequence x = () is said to be statistically convergent to the number / if for each ¢ > 0 the set

{(4,k), j<mand k <n:l|z;,—¥{ >c}

has double natural density zero. In this case we write stp-lim; x;, = ¢ and denote the set of all statistically
convergent double sequences.

If Y is a non-empty set, then a family of subsets of Y is called an ideal in Y iff (i) § € Z; (ii) A, B € Z implies
AU B € T; (iii) for each A € Z and B C A we have imply B € 7.

7 is called a nontrivial ideal if Y € Z # () and P (Y) is the power set of Y.

Let Y is a non-empty set. A non-empty family of sets F C P (Y) is called a filter on Y iff (i) 0 ¢ F; (ii)
A, B € F implies AN B € F; (iii) for each A € F and A C B we have B € F.

A nontrivial ideal Z in Y is called an admissible ideal if it is different from P (N) and contains all singletons,
ie., {z} €7 foreach z € Y.

Let Z C P (Y) be a nontrivial ideal. Then a class

F(Z)={M cN: M =Y\A, for some A€ T}

is a filter on Y, called the filter associated with the ideal Z.

An admissible ideal Z C P (N) is said to satisfy the condition (AP) if for every sequence (A, ),y of pairwise
disjoint sets from 7 there are sets B, C N, n € N such that the symmetric difference A, AB,, is a finite set for every
n and U,enB, € Z.

Definition 1.1 ([15, 16]) Let T C P (N) be an admissible ideal in N. The sequence {x},cy of elements of R is
said to be I-convergent to £ € R if, for each &€ > 0, the set A(e) ={k € N: |xy — | > e} € Z. In this case we write
Z-limz = ¢.

Throughout, 7 will stand for an admissible ideal of N, and by a sequence we always mean a sequence of real
numbers.

This concept was extended to Z-convergence of double sequences by B.C. Tripathy in [26]. In order to distinguish
between the ideals of P (N) and P (N x N) we shall denote the ideals of P (N) by Z and that of P (N x N) by Z,,
respectively. In general, there is no connection between Z and Zs.

Recall that Z-statistical convergence using the notion of ideals of N is defined by following:

Definition 1.2 A sequence © = {xy}, oy is said to be I-statistically convergent to L or S (I)-convergent to L if,
for each e >0 and 6 > 0,

1
{nEN:nHkSn: ||xk—L||26}|25} ez
or equivalently if for each € > 0
07 (A (€)) =Z-limd, (A (e)) =0,

where A () = {k <n: oy — L| = £} and 5, (A (e)) = A€,

n
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In this case we write z, — L (S (Z)). The class of all Z-statistically convergent sequences will be denoted simply
by S(Z). Let Iy be the family of all finite subsets of N. Then Z; is an admissible ideal in N and Z-statistically
convergent is the statistical convergence [4, 21].

Definition 1.3 (/26]) Let I, be an ideal of P (N x N). Then a double sequence (x;1) is said to be Z-convergent to
L in Pringsheim’s sense if for every e > 0,

{(j,k')ENXNZ‘Z‘jk—L|Z€}EIQ.

In this case, we write Ip-limx;, = L.

2. Main results

In this section, we are concerned with ideal statistical pre-Cauchy and ideal statistical convergence for double
sequences.

Definition 2.1 ([5]) A sequence (xy)ren is said to I-statistically pre-Cauchy if, for any € > 0 and 6 > 0,
1 . .
{nEN: EH(L/@ Haw — i) > e, gk <n}| > 5} € I.

We now introduce the main definition of this paper.

Definition 2.2 We say that a double sequence x = (1) is I-statistically pre-Cauchy if, for any € >0 and 6 > 0,
1 . .
{(m,n) eNxN: ponc e {7, k)« |xje — zpgl > €, 5 <m,k <n}| > 5} € Io.

Definition 2.3 ([1]) We say that a double sequence x = (x;1) is said to be I-statistically convergent to L if, for
any e >0 and 6 > 0,

1
{(m,n) e NxN: %\{(],k‘) Haje — L] > €} 26} € Ts.

The following is our main result in this section.
Theorem 2.4 An T,-statistically convergent double sequence is Ts-statistically pre-Cauchy.

Proof. For any € > 0 and § > 0,

1 €
= L — | < <n: e — > — >
A {(m,n)eNxN mn‘{]_m,k_n |z — L| > 2})_6} €y

Then

1 . €

—_— {]Sm,kﬁn:|xjk—L|27H <4,
mn 2

that is,

1 . €
—‘{jgm,kgn:|xjka|<f}’ >1-96
mn 2

for all (m,n) € A¢, where ¢ stands for the complement. Writing

an:{jgm,kgn:|xjk—L|<%},

we observe that for j, k,p,q € By

e ¢
|xjk—qu|§|xjk'_L|+|qu_L|<§+§:5-
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Therefore
an X an C {(]7k) : |xjk 7L‘ <g, ] < mak < ’fl}

which implies

|:|an|

Pl < LG ok — ] <, 5 Sk < ]

Hence

. |an| 2 2
WG o =l < g < mok <l 2 [ B2l gy,

that is

e M) g~ el 2 €, j <mk<m}| <1 (15

for all (m,n) € A°. Let 6; > 0 be given. Choosing § > 0 so that 1 — (1 — §)> < 8, we see that every (m,n) € A°

m2n2 ‘{(]7 ) |Ijk _qu| >¢€ J< m, k < TL}| <4

and so

{( m)EeNxN: ! |{(j,)::cjk—qu25,j§m,kz§n}|25l}CA.
Since A € 75, we obtain

{mm) € NN o G0 oy = ol 22 G Smok<a)| 281 €T,

and this completes the proof the theorem.

The next result gives a necessary and sufficient condition for a double sequence to be Zy-statistically pre-Cauchy.

Theorem 2.5 Let v = (x1) be a bounded double sequence. A double sequence x = (x;i) is Lo-statistically pre-
Cauchy if and only if

Iy-lim —— E E T Tpo| = 0.

2- mon m2n2 | Jjk — pq|
7,p<mk,q<n

Proof. First assume that

Zo-lim Z Z T Tpe| = 0.
anmgnz |]k pq|

J,p<mk,q<n

Recall that for any e > 0 and (m,n) € N x N we have that

1 1 . .
oo} Z Z |z — Tpq| = €. <M|{(Lk)i|%k—%q|25}a ]§m7k§n|).

J,p<m k,q<n

Therefore for any § > 0,

1 . .
{(m,n) eNxN: mH(],k) e — xpgl > €, § <myk < n} 2(5}

Cc (¢ (m,n) e NxN: pooc e Z Z|$Jk Tpg| = e

7,p<mk,q<n
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Since Zo-lim,y, ,, ﬁ > > |zjr — Tpgl =0, so the set on the right hand side belongs to Z, which implies that
Jp<m k,q<n

1 . .
{(m,n) e NxN: WH(],I@) e — xpgl > €, § <myk < n} 2(5} € 1.

This shows that z is Z5-statistically pre-Cauchy.
Conversely assume that x is Zp-statistically pre-Cauchy and that € > 0 has been given. Since x is bounded there
exists an integer B such that |z;,| < B Vj,k € N. For each m,n € N,

1 1
22 Z Z |Zjk — Tpq| = T2n2 Z |Zjk — Tpql

J,p<m k,q<n |2k —2pqgl <5

1
+ oo Z |k — Tpql

|Ijk_zm|Z%

€
< -+4+2B
—2 + (m2n2

(GR) b =] 2 2 g k<),
Since z is Zy-statistically pre-Cauchy, for § > 0

1 . g .
A= {(m,n) GNXN:W‘{(j,k) Ve — Tpel > 2 J Sm,kgn}’ 25} € Io.
Then for (m,n) € A°

1
m2n2

{8 foin =gl = 5, G <mk<n}| <8

and so

1 5
Jip<m k,q<n
Let 61 > 0 be given. Then choosing ¢, > 0 so that § 4+ 2B < d; we see that every (m,n) € A°

S XY ekl < 6,

Jp<m k,q<n

that is
1
(m,n) e Nx N: 3 Z Z |zjk — xpg| > 61 p C A€ L.
J,p<m k,q<n

This proves the necessity of the condition.

Now we give a sufficient condition under which an Z,-statistically pre-Cauchy double sequence can be Z,-
statistically convergent.
Prior to proving the next result, we recall the following definition of Zs-limit inferior [13].

Definition 2.6 Let Ty be an admissible ideal of N x N and x = (z;5) be a real double sequence. Let
Ay ={aeR:{(j,k):zjr <a} ¢I}.
Then the Iy-limit inferior of x is given by

inf A, if Ay £ 0

Iz—hmlnfx:{ . if A, =

It is known (Theorem 3, [13]) that Ts-liminf x = « (finite) if and only if for arbitrary e > 0,

{(J k) rzji <a+e} ¢ Ty and {(j, k) : zjr < a—e} € Iy
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Theorem 2.7 Let x = (i) be Iy-statistically pre-Cauchy. If x = (x;1) has a subsequence (xtjtk) which converges
to L and

1
0 < Ty — liminf — |{(t;, ) : j,k € N
< T Thl}rllln o {(ts,t) : j, k € N} < o0,

then x is Iy-statistically convergent to L.

Proof. Let ¢ > 0 be given and select ng € N such that if ; > ng or t;, > ng for some j, k then |z, — L| < §. Let
A= {(tj,tx) : t; >ng or tp >ng, j,k € N} and B = {(j, k) : |xjr — L| > €} . Since

1 ) -
m’{@,k) S — xpg| > 5 J gm,kgn}‘

> 3 Y s ()

Jp<m k,qg<n

1 1 .
:%\{tj <m,ty <n:(t;,tg) EAH%HJ <m,k<n:|zjy—L|>e}.

Since x is Zs-statistically pre-Cauchy, for § > 0
1 . e .
C = {(m,n) e NxN: m’{(g,k) Ve — xpgl > 3 j Sm,kﬁn}‘ 25} € Is.

Therefore for every (m,n) € C°

1

m’{(j’k):‘xjk_xpdzgvjSm,kﬁnH<5. (1)

Again since

1
Ig—liminf%Htj <mty<n:(j,k) e NxN} =b>0,

m,n

S0
1 b
{(m,n)eNxN:mn{tjgm,tkgn:(j,k)ENxN}|<2}:DEIQ

and so every (m,n) € D¢

1
— |t < tr <n:(J,k) e Nx N} >
—|{ty < myti <0 (k) € NX N} >

| o
—
DO
S~—

From (1) and (2) it follows that every (m,n) € C°N D¢ = (CU D),

1 26
—Hi<mk<n:|ry— Ll > < —.
< mk<n:la - I 26} <

Let &; > 0 be given. Then choosing 6 > 0 such that 2 < &, we see that every (m,n) € (C' U D)*

1
%Hjﬁm,kﬁnil%kfﬂ25}|<61,

that is,

1
{(m,n)eNxN:mn{j<m,k<n:|xjk—L|>5}|>5}
cCuUbD.

As C,D € Iy so CUD € 7y and consequently the set on the left hand side also belongs to Zy. This shows that x is
To-statistically convergent to L.
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