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Abstract

The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing properties and
identities. In this paper, Generalized Fibonacci-Like Polynomials are introduced and defined by
m,(X) =xm_,(x)+m, ,(X),n>2. with m (x)=2sandm (x) =1+s, where s is integer. Further, some basic identities are

generated and derived by standard methods.
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1. Introduction

The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing properties and
identities. It is well-known that the Fibonacci polynomials and Lucas polynomials are closely related and widely
investigated. Fibonacci polynomials appear in different frameworks. These polynomials are of great importance in the
study of many subjects such as algebra, geometry, combinatorics, approximation theory, statistics and number theory
itself. Moreover these polynomials have been applied in every branch of mathematics. Fibonacci polynomials are
special cases of Chebyshev polynomials and have been studied on a more advanced level by many mathematicians.

Basin, S. L. [1] show that Q matrix generates a set of Fibonacci Polynomials is defined by the recurrence formula

fia () =xf, () + f, 1 (x), n=2with f (x)=0, f (x)=1. (1.1)
The Lucas Polynomials is defined by the recurrence formula

Lo () = X1, () + 1, (X), n=2with | (x)=2,1 (X) =X (1.2)
Generating function of Fibonacci polynomial is

S () =t(1-xt-t7) (1.3)
(;:)nerating function of Lucas polynomial is

S (0 =(2-xt)(1-xt -7 ) (1.4)
n=0

Explicit sum formula for (1.1) is given by
1z
2 -k-1
f0)=> (” ) jx”“k. (L5)
k=0

n
where [kj a binomial coefficient and [X] is define as the greatest integer less than or equal to x.

Explicit sum formula for (1.3) is given by
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| _
| (x) = L[” . ijnﬂ_ (1.6)

k=0 N—
n

K a binomial coefficient and [X] is defined as the greatest integer less than or equal to x.

where [

Fibonacci-Like polynomials [11] is defined by the recurrence relation:
s, (X)= xs,, (X)+s,,(x),n>2 with initial terms s, (x)=2and s, (x)=2x. .7

Generalized Fibonacci-Lucas Polynomials [12] is defined by recurrence relation.
b, (x)= xb,, (x)+b , (x),n>2 With initial conditions b, (x)= 2bandb, (x) = s, (1.8)
where b and s are integers.

The Fibonacci and Lucas polynomials possess many fascinating properties which have been studied in [2] to [12].
In this paper, Fibonacci-Like Polynomials are introducing with some basic identities and derived by standard method.

2. Generalized Fibonacci-Like Polynomials:

Generalized Fibonacci-Like Polynomials m, (x ) are defined by recurrence relation
m,(x) =xm,, (x)+m,_,(x),n>2.With m (x) =2sandm (x) =1+s, where s is integer. (2.1)

The first few terms of generalized Fibonacci-Like Polynomials are as follows:
m (x) =2s,

m (X)=1+s,
m (X) = (1+8)x+2s,

m (x) =1+ S)x? +2sx + (1+s) and so on.

If x=1, thenm_(1) is generalized Fibonacci-Like sequence.

The characteristic equation of recurrence relation (2.1) is A —xA-1=0

o XX +a 42X+4 and poX=NX‘+4 ~/2><2+4 (2.2)

Also, o3 = —1, Binet’s formula of Generalized Fibonacci-Like sequence is defined by
m, (x) = Aa" + BB"

mn(x)_A{XJr\/;Zﬁj” +B[x+m]"

2
Here, o_25(X=F) g g_28(a=%) (2.3)
a—pf a—pf
AISO’AB:( as” )sz+B:mo(X):23, a—p=\+a,and o+ =x*+5. (2.4)
a—p

Generating function of Generalized Fibonacci-Like Polynomials is
e 2s(1-xt)+(1+s)t

S (e = B

~ (1—xt —t )

Now Hyper geometric representation of generating function

Zmn (x)t" =[2s(1—xt)+(1+ S)t](l_ “t —t2)717
=[2s(1-xt)+(1+ S)t][l—(xH)t]*l |

(2.5)
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Z;mn(x)t” —[25(1-xt)+ (1+5)t] D (x+ 1)t
~[2s(1-xt)+ (1+s)t]z:;t" ” [fk‘]xnk.tk

~[2s(1-xt)+ (1+s)t]Z:;n T

W
[%2)
f,:
?-<+
N
.|_
=
.|_
[72)
af
)
-
X
—
M
—
-}
_|_
-
N

=[2s(1-xt)+(1+ s)t]eXt - (0t k)ﬂ

n+k+1( )
ln+k k!’

=[2s(1—xt)+(1+s)t] x‘kZ:

:[zs(l_xt)+(1+s)t]ext§(n+1)k %(tk—?
= [25(1_xt)+(1+s)t]eXt 2Fl[n +1:11; tz} :

imn (" =[2s(1-xt)+(1+s)t]e* ,F[n+1: 11 17 ] (2.6)

3. Some ldentities of Generalized Fibonacci-Like Polynomials

In this section, we present some identities like Catalan’s; Cassini’s; d’Ocagne’s identities etc. by Binet’s formula or
explicit sum formula or generating function.

Theorem 3.1: Prove that

M., (x)-m,_ (x)=xm, (x),n>1. (3.1)
Proof: By Generating function of Fibonacci-Like polynomials, we have

>, ()t =[25(1-xt) +(L+s)t](L-xt—t2)

n=0

Differentiating both sides with respect to t, we get

ngonmn(x n-1 [25 (1-xt)+ (1+s)t}(x+2t)(1—xt—t2)_2+(1+s—25x)(1—xt—t2)

-1

(1-xt— )an ”’1:[25(1—xt)+(l+s)t](x+2t)(1—xt—t2)_1+(1+s—25x)
(

1-xt— ) nm( =(x+2t) Zm X)t" +(1+5—2sx)

n=

i "t anmt —ann(x " Z t—Zth”+1 +(1+5—2sx)
n=0

n=0

Now equating the coefficient of t" on both sides we get,

(n+1)m_,, (x)—nxm, (x)—(n=1)m__, (x)=xm, (x)+2m,, (x),
(n+1)m_,, (X)=(n+1)m_, (x)=(n+1)xm, (x),

m,, (X) My (X) =Xm, (X)

This is required results.
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Theorem 3.2: Prove that

m, (X) =xm_, (x)+m_ (x)+m_,(x), n>2

Proof: By generating function of Fibonacci-Like polynomials, we have

Zm ()" =[ 2s(1-xt)+ (L+s)t](1-xt—t?)

Differentiating both sides with respect to x, we get

Zm X)t" =[23(1—xt)+(1+s)t](1—xt—t2)7l,

n=0

S, ()t =[ 25 (1-xt)+ (L+8)t] (-1 (1-xt 1) " (=) + (1-xt—t2) " (~2st)

(1-xt —tZ)im'n (x)t" =[ 2s(1—xt)+(1+s)t ](-1)(1-xt -’ )71 (—t)—2st
(

1- xt—tz)im'n ()" =t> m, (x)t" —2st,

Now equating the coefficient of t", we get
m, (X)—xm_ (x)—m_, (X)=m__, (x).
m, (x)=xm_, (X)+m_, (x)+m,_,(x).

Theorem 3.3: Prove that
My, (X) =xm, (X)+m, (x)+m, (x),n>1.

Proof: By (3.1), we have
m,.. (X)—m,_ (x)=xm, (x),n>1.

By differentiating with respect to x, we get
M. (X)—m (X)=xm, (x)+m, (x),

My (X) = xm, (X)+m, (x)+m, (X).

Theorem 3.4: Prove that

nm, (x)=xm, (x)—2m,,(x).,n=1 and xm,,(x)=(n+1)m, (x)—2m,(x),n>1.

Proof: By generating function of Fibonacci-Like polynomials, we have

gmn (x)t" =[ 2s(1—-xt)+(1+s)t](1-xt—t* )_l.

Differentiating both sides with respect to t, we get

an =(1+s- 25x)(1— xt —tz)fl +[ 25(1—xt)+(L1+s)t ](x+ 2t)(l— xt —tz)f2

Differentiating both sides with respect to x, we get

Zm = (~2st)(1-xt—t?) " +[2s(L-xt) +(L+s)t e (1-xt—t?)
Zm = (~28)(L-xt—t?) " +[25(L—xt)+(L+s)t](1-xt 2 )’

Zm'n ()t +2s(1-xt -’ )71 =[2s(1-xt)+(1+s)t](1-xt —tz)f2
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(3.2)

(3.3)

(3.4)

(3.5)
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Using (3.5) in (3.4), we get

an =(1+s- 25x)(l—xt—t2) +(x+2t {imn )t +25(1-xt—t*) }
n=0

n=0

Ms I

nmn(x)t”‘l:(1+s—25x)(l—xt—t2) +(x+2t imn T 4+2s x+2t)(l—xt—t2)71
n=0

n=0

M

nm, (x)t"* :(1+s—25x)(l—xt—t2)71+ximg(x)t” 1+22m X)t" +2s x+2t)(1—xt—t2)7l
n=0

1l
o

n

Equating the coefficient of t" on both sides, we get

nmp (x):xmh(x)+2m;1_1(x). (3.6)
Again equating the coefficient of t", we get

(n+1)m,,, (x)=xm’,, (x)+2m (),

xm,,, (X)=(n+1)m,,; (x)—2m, (x).. (3.7)

Theorem 3.5: Prove that
(n+1)m, (x)=m , (x)+m, _,(x).,n>1.

Proof: By (3.1), we have
M., (x)-m,_ (x)=xm, (x),n>1.

By differentiating with respect to x, we get
m . (X)—m, (X)=xm (x)+m, (X),

xm’ (x)+m, (X)=m, (x)—m_ (X). (3.8)

Using equation (3.5) in equation (3.8) we get

nm, (X)—2m_, (x)+m, (x)=m, (x)-m (x),

nm, (X)+m, (xX)=m ., (x)+2m__ (x)-m ,(x),

(n+1)m, (x)=m ; (x)+m, _(x). (3.9)
Theorem 3.6: Prove that

xm, (X)=2m,, (x)=(n+2)m, (x),n=0.

Proof: Using equation (3.7) in equation (3.9), we get

(n+1)mn(x)=m'n+1(x)+%[nmn(x)—xmg(x)],

2(n+1)m, (x)=2 ;Hl(x)+[nmn(x)—xm;1(x)],

L (X)=2m,,; (x)+nm, (x)—(2n+2)m, (x),

L (x)=2m,, (x)+(n-2n-2)m, (x),

L (X)=2m,,; (x)=(n+2)m, (). (3.10)

Theorem 3.7: (n+1)xm (x)=nm_, (x)—(n+2)m _,(x),n>1.
Proof: Using equation (2.3) we get

(n+2)m ., (%) =X, () =m y (=M., (x)+m s ()

(n+2)m,, (x)=(n+1)xm, (x)=(n+1)m, , (x)= m( )+m s (%),
(”+1) 11 () =(n+1)M o, () =m s () =M, (%) = (n+1)xm, (x),
., (X)=(n+2)m,,, (x) =(n+1)xm,

(n+1)xm (x)=nm , (x)-(n+2)m

X

3.

x
=3
<

)=
)
)

X

3.

X).

x). (3.11)

(
(
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Theorem 3.8 (Explicit sum formula): For Generalized Fibonacci-Like polynomials are given by

m, (x) = 25%(” 3 ij“k

k=0

Proof: By generating function (2.5), we have
Sim, ()t =[25(1-xt)+ (1+5)t](1-xt 7
n=0

=[2s(1-xt)+(1+s t](l—xt—tz)fl

:[25(1—xt +(L1+s t]z x+t)"
n=0

=[2s(1-xt)+(L+s)t ]nZ:‘ v mno(E

=[2s(1-xt)+(1+s)t]>.

Xn—k .tk

N—

s
>
5
=~
=
n
1

=[2s(1-xt)+(1+ s)t]nZ:;
~[2s(1-xt)+ (1+5)t]3.

&l (ks
mn(x)=252k(ln kz)k'!x“".

k=0 =117

Equating coefficients of t"on both sides, we get required explicit formula.

Theorem 3.9 For positive integer n >0, prove that

m, (x) = 2sx" F(Z n2+11 n,_ﬁ)

X

Proof: By explicit sum formula (3.13), it follows that

= kln—2k!
Ly, e, x
N o ), K

=35
ko (-n), (-1* ,

gere () (6

m, (x) = 2sx

m, (X) = 2sx
( ) k=0 (_n)kkl
Hence,

n -n -n+1, -4
m, (X) = 2sx 2F1(7, 5 ,—H,FJ-

Theorem 3.10: For positive integer n >0, prove that

< t" c c+l n+ln+2 t?
=2s(1-xt) ,R|=,—,n+1 , , .

n

(3.12)

(3.13)

(3.14)



Global Journal of Mathematical Analysis 255

n

Proof: Multiplying both sides of (3.13) by (c)nt—| and summing between the limit n=0to n =0, we obtain
n!

Y (e)m, ()t =253 3 KL (¢ you L
k=0

pry =i kln- 2kI n

— Zsii n+k| Xntn+2k
0 k=

0k'n'n+2k' o

_ o n+k! n, ok
—ZSzzklnl n+2k) (c+2k) (c), (xt)'t

n=0

_ )(c+2k i n+k! (C)Zk 2"

o kIn+2k!

- - k!
- 1—xt (c+2k) N+ {2k
Skz:(;( X ) k!n+2k!(c)2k

2 n < n+k! K
ZS{Z +2k n! }Zk!nJrZK!(C)Zkt

= (1-xt)
:23(1_xt)’°kZ:4 kl?]ikz'k!(z)%(%jk(czljk[(1_tj<t)2}
n + k! «
_28(1 Xt) kzc:)m( )Zk( j(c;l)k[(l_tzxt)z}

=2s(1-xt)° Z((n +11))2"k( )Zk[%jk(%jk {ﬁ:lk

:25(1—xt)‘°ki‘;22k(n$51€knﬂj (Z)Zk(;jk[czl)i(l_t;)z}k

2 2

)| (C?]k(”“)k[ : }

= (n;l)k (%21 (1—xt)?

0 N —C c c+1 n+l n+2 t2
Hence, néo(c)nmn(x)m=25(l—><t) 3F1[E’T’n+l'71 2 ‘(1—xt)2}

Theorem 3.11 (Explicit sum formula): For Generalized Fibonacci-Like polynomials

M, (X)=(1+s —st)%(n ) ijw

k=0

(3.15)
Proof: Generating function (2.5), we have
Sim, (0t =[ 2s(1-xt)+ (L+s)t](1-xt—t?) 7,
n=0
=[2s(1-xt)+(L+s)t](1-xt—t?) "

=[2s(1-xt)+(1+ s)t]g(xﬂ)”t”
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3 m, (X)t" =[ 2s(1-xt)+ (1+s)t]it”zn:{2jx”ktk :

=[2s(1-xt)+ (1+s)t]§mio k!(nn_'k)!xn-k o
=[2s(1-xt)+ (1+s)t]ni;g(“kjn'j)!xn_tzm
=[2s(1-x)+ (1)t ] 3 g(“kjn'j)! e

Equating coefficients of t" on both sides, we get required explicit formula

HN
m, (x) = ZSkZ:; k(!n —kz)k-! X",

Equating coefficients of t"* on both sides, we get required explicit formula

&l (niy
m,., () =(1+s_25)zﬂ

= kln—2k!

n—-2k

Theorem 3.12 (Catalan’s Identity): Let m_(x) be the n™ term of generalized Fibonacci-Like polynomials, then

mZ (x)—m,,, (x)m,_, (x)= (- 1)nr[1+s)m (x)—2sm,;(x)]|,n>r>1
(3.16)

Proof. Using Binet’s formula (2.5), we have
mrf (X) -m,.. (X) m._, (X)
= (A" +Bp")" —(Aa"" +BB™")(Ax" T +BE" )
= AB(ap)(2-a' B —a ' p")
= AB(-1)" " (" = )
4s? ner >

= _1 ro_ r

eV (" —p5")

~as?(c1) f[“a;gj

Since a"—p" _ (@+s)m, (x)-2sm,, X) (L+s)m, (x)—2sm,,,(X) , we obtain
2
a-pB  (1+s) —2s(1+s)—4s’ 1-5s

mZ (x)—m,,, (x)m,_, (x)= ( )n r[(1+s)m (x)—2sm,,(x)],n>r=1.

Corollary 3.13 (Cassini’s Identity): Let m, (x) be the n™ term of generalized Fibonacci-Like polynomials, then
mr? (X) - mn+l(x)mnfl(x) = (_ 1)”—1(1_ 552 )’ n= 1 (317)

Proof: If r = 1 in the Catalan’s identity, then obtained required result.

Theorem 3.14 (d’Ocagne’s Identity): Let m,(x) be the n™ term of generalized Fibonacci-Like polynomials, then

(1+s)m,_, (x)—2sm
1-5s*

m, (X) My (X)_ mp+1(x)mn (X) = (_l)n

”"”}, p>1n>0, p>n.
(3.18)



Global Journal of Mathematical Analysis 257

Proof. Using the Binet’s formula (2.5), we have

m, (x)m,,; (X)=m, ., (x)m, (x) = (Aa® +BP ) (Ao +Bp™ ) - ( A" + BBP)( Aa" +BB"),
_ AB(apﬂn+l+an+lﬁp _anﬁpﬂ_apﬂ n)
= AB(ap) [pla™ - pr)-alar - o)
= AB(-q) (a— B)o™" - p*")

48P

- ),
— 45 (~1)" [—a p;: :ﬁpfn j

Using subsequent results of Binet’s formula, we get

Sinceap_n -B" (1+s)m,_, (x)—2sm,_,, _ (1+s)m,_, (x)—2sm,_,., we obtain

a—f (l+s)2—25(1+s)—4s2 1-5¢? "

(1+ s) m,_, (x)— 2sm
1-5s?

My () My ()~ My (X), (x)—(l)"[

p”“}, p=1,n=0,p>n.

Theorem 3.15 (Generalized ldentity): Let m, (x) be the n™ term of generalized Fibonacci-Like polynomials,
then

m, (x)m, (x)—=m,_ (x)m,,, (x)=(-2)""[(1+s)m, —2sm_, ][ (1+s)m, ., —2sm, . |,n>m=r=1.
Proof. Using the Binet’s formula (2.5), we have

m, (M, . (x)-m_,(m(x), = (Aa® + BA? JAa" + BA" )~ (Aa®" +BB" " fAa"" +BS™)
ool [ 8

a" B’
_ (ar_ﬂr) p pn+r _ _N+r pp
- AB ) (@ p™ —a™ BP)
_ r_ pr apﬁn_anﬂp
= AB( ﬂ{ - o }

= AB(—l)_r(ar _ﬂrxapﬂrwr o™ p)
= AB(—l)’rapﬂp(ar _ﬂrXﬂnprrr —a"’p”)
:—AB(—]_)_r apﬂp (ar _,Br)(anfpﬂ _ﬂnip”).

Using subsequent results of Binet’s formula, we get

. a -p 1
Since = 1+s)m —2sm ., |.
a_ﬁ (1_532)[( ) r r+l
an7p+r _ﬁn*p“’ _ (1+ S)mn—p+r - Zsrnn_p+r+1
py; = 1—5s2 ’

m, ()m, (x)—m,_, (m,, (x) = (1) [@+s)m, —2sm,_ J@+s)m, ., —2sm, . In>m=>r=>1

n—p+r

(3.19)

The identity (3.15) provides Catalan’s identity, Cassini and d’Ocagne and other identities:
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4.
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Conclusion

In this paper, Generalized Fibonacci-Like Polynomials are introduced. Some basic identities are generated and derived
by standard methods.
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