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Abstract 
 

The Soret–driven ferro thermoconvective instability of multi–component fluid in a porous medium heated from below 

and salted from above in the presence of dust particles subjected to a transverse uniform magnetic field has been 

analyzed using Darcy model for various values of permeability of the porous medium. The salinity effect has been 

contained in magnetization and density of the ferrofluid. A small thermal perturbation imparted on the basic state and a 

linear stability analysis is used for this model for which normal mode technique is applied. An exact solution is obtained 

for the case of two free boundaries and both stationary and oscillatory instabilities have been investigated. It is found 

that the system destabilizes only through stationary mode. The non-buoyancy magnetization parameter, the dust particle 

parameter and the permeability of the porous medium are found to destabilize the system. The results are depicted 

graphically. 
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1. Introduction 

Recent interest in the study of electromagnetic field theory has been motivated by its innumerable applications like 

satellite communication, TV communication, microwave communication, wireless communication and mobile 

communication. This theory is also used in analysis and designing of antenna, transmission, Bio-medical system, lines 

and wave guides, reducing acidity in vegetable to improve taste, weather forecast radars, electric motors, surface 

hardening, plasmas, remote sensing radars, radiation therapy, lasers, soldering, annealing and masers. Ferrofluids are 

single-magnetic-domain, two-phase three-component fluids [1], where the core stands for the single domain, core with 

carrier fluids stands for the two phases, and core with surfactant and carrier fluids stands for three component. Such 

types of fluids have several applications like mechanical engineering, analytical instrumentation, heat transfer, 

electronic devices, aerospace, etc and are widely used in rotating X-ray tubes and sealing of computer hard disk drives. 

These are used as lubricants in bearing and dumpers. In biomedicine field, there is an idea to use ferrofluids for cancer 

treatment by heating the tumor soaked in ferrofluids by means of an alternating magnetic field. Ferrofluids are 

suspensions of magnetic nanoparticles whose physical parameters and flows in such fluids could be controlled by an 

applied magnetic field. The magnetic controlled can be archived by means of magnetic fluid with a strength of the order 

10 mT (Odenbach [2]).  

 In the standard Benard problem, instability is driven by buoyant forces caused by a temperature difference between 

the upper and lower planes bounding the fluid. If the fluid additionally salt dissolved in it, then there are potentially two 

destabilizing sources for density difference, the temperature field and salt field. These effects give rise to a convection 

called thermohaline or double diffusive convection. The Benard convection in ferromagnetic fluids has been well 

analyzed by various authors such as Rudraiah [3] and Siddheshwar [4]. 

 In many investigations, porous medium is taken to be isotropic for geological and pedological process rarely it 

forms isotropic media, as is usually assumed in transport studies. Processes such as frost action, sedimentation, 

compaction and reorientation of solid matrix are responsible for the creation of anisotropic natural porous media. 
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Rudraiah and Malashetty [5] have analyzed the effect of coupled molecular diffusion on double diffusive convection in 

a horizontal porous layer by use of finite amplitude method. Later, the study is made for weakly non-linear analysis by 

Rudraiah and Siddheshwar [6]. Lakshmi Narayana et al. [7] investigated the linear stability analysis of a steady 

convective double diffusive flow of Hadley type considering the Soret effect which is set up by the horizontal 

components of temperature and concentration gradient in a shallow horizontal layer of a fluid saturating a porous 

medium. Bahloul et al. [8] studied numerically and analytically, natural convection in a horizontal Darcy porous layer 

filled by a binary fluid. In both cases double-diffusive and Soret induced convections were used. The critical Rayleigh 

numbers for the onset of supercritical, overstable and oscillatory convections were determined in terms of the governing 

parameters. 

 In 1970s, Finlayson [9] studied convective instability of ferromagnetic fluid heated from below in the presence of a 

vertical uniform magnetic field. Further, Vaidyanathan et al. [10] gave the convective instability of ferromagnetic fluid 

through porous medium of large permeability and mentioned that stationary convection can occur and oscillatory 

convection cannot occur by use of Brinkman model. This work has been extended to anisotropic porous medium by 

Sekar et al. [11] and Vaidyanathan et al. [12] modified the above work with use of Darcy model. All the above 

researches have analyzed the convective instability of a single component fluid. The linear gradients studied on 

thermohaline convection by Baines and Gill [13]. Vaidyanathan et al. [14, 15] illustrated ferro thermohaline convection 

in the presence and absence of a porous medium of sparse distribution of two component ferroconvective system. 

Vaidyanathan et al. [16] attempted to study the Soret effect due to thermoconvective instability in a ferrofluid of a 

sparse distribution. Sekar et al. [17] further studied the analysis to the condition of a porous medium of ferro convective 

instability of multi-component fluid heated from below and salted from above using Brinkman model. This work has 

studied for Darcy model by Sekar et al. [18]. 

 More recently, the presence and absence of rotation on Soret-driven ferrothermohaline convection in an anisotropic 

porous medium have been investigated by Sekar et al. [19-20] by use of Brinkman model. The temperature dependent 

viscosity and Soret effects are used in study on thermohaline convection in ferrofluid saturating a porous medium which 

has been obtained by Sekar and Raju [21]. Sekar and Raju [22] studied the effect of magnetic field dependent viscosity 

on Soret-drive ferrothermohaline convection in a rotating anisotropic porous medium. This investigation has been 

worked in the absence of Coriolis force by Sekar and Raju [23]. The effect of dust particles on Soret-driven 

ferrothermohaline convection in a porous medium has been studied by Sekar et al. [24]. 

 In the present work, the convection of Soret-driven thermohaline instability of multi-component dusty ferrofluid 

heated from below and salted from above is investigated in a porous medium by use of Darcy model. Using linear 

stability analysis the conditions for the onset of stationary and oscillatory instabilities have been obtained. 

2. Mathematical formulation and governing equations 

We consider an infinitely spread layer of an incompressible Boussinesq ferromagnetic fluid of thickness ‘d ’ in the 

presence of transverse applied magnetic field saturating a densely packed porous medium heated from below and salted 

from above is considered. The temperature and salinity at the bottom surface / 2z d  are / 20T T  and 

/ 20S S and the upper surface / 20T T and / 2,0S S  respectively. The porous medium is assumed to be densely 

distributed so that the Darcy model could be used. Both boundaries are taken to be free and perfect conductors of heat 

and salt. The gravity field g = (0, 0, -g) and uniform magnetic field intensity H = (0, 0, H0) pervade the system. The 

Soret effect is considered on the temperature gradient. Considering the mathematical equations governing the above 

investigation in the form (Sekar et al. [17], Chandrasekhar [25]). 
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 0 B M H                                                                                                                                                                    (8) 

 The density equation of state for a two component Boussinesq ferrofluid [17-21] is 

 

0[1 ( ) ( )]0 0St T T S S                                                                                                                                             (9) 

 

 The assumption is made that the magnetization is aligned with magnetic field, but allow a dependence magnitude 

of magnetic field, temperature and salinity, so that 
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 The linearized magnetic equation of state with the corresponding parameter H0, T0 and S0 is  

 

0 0 0 2( ) ( ) ( ),0M M H H K T T K S S                                                                                                                     (11) 

 

 Here H0 is the uniform magnetic field of the fluid layer when placed in an external magnetic field ext
0 ,ˆH kH k̂ is 

a unit vector in the z-direction, H is the magnitude of magnetic field H and M is the magnitude of the magnetization M. 

 

 The basic state is assumed to be quiescent state and the basic state quantities are obtained by substituting velocity 

of quiescent state in the constituent equations. The basic state quantities obtained are  

 

0qb  , / tT z    , 

 

where t  is the non-negative constant. Therefore,  0b tT T z  . 

 Further /S z S   , where S is the non-negative constant. Therefore, .0bS S zS   Taking the components of 

magnetization and magnetic field in the quiescent state as [0, 0, M0(z)] and [0, 0, H0(z)], it is seen that the equation is 

identically satisfied and Maxwell’s equations yields 
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where 1C is a constant. 

 Using Eq. (12) in Eqs. (7a) and (8), one gets 
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where spatial variations H0 and M0 are taken into account for our analysis. 

 

 A small thermal perturbation has been imparted on all the dynamical variables. Let the components of perturbed 

magnetization and magnetic field can be taken as [ , , ( ) ]1 2 0 3
' ' 'M M M z M  and [ , , ( ) ],1 2 0 3

' ' 'H H H z H respectively. The 

perturbed temperature and solute are taken to be 

'T T Tb 
 
And ,'S S Sb                                                                                                                                            (14) 

where primed quantities denote the perturbation from the quiescent state.  

 

 Further analysis has been carried out using the analyses similar to [17-24]. The vertical component of the 

momentum equation can be written as 
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where 2 2 2 2 2 2 2( / ) ( / ) ( / )x y z          and 2 2 2 2 2( / ) ( / ).
1

x y      
 

3. Normal mode analysis method 

Analyzing the disturbance into normal modes, one can assume that the perturbation quantities are of the form  
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where k0 is the wave number given by 
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 Following normal mode technique and making use of Eqs. (16) and (17) in Eq. (15), then gives the vertical 

component of Eq. (2) is can be written as 
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 The modified Fourier heat conduction equation is 
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 The Ficks diffusion equation is  
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 Following Sunil and Sharma [26] one gets 
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 The Eqs. (18)- (22) can be written in non-dimensional form using the non-dimensional numbers and parameters are 
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 The non – dimensional form of governing equations can be written as 
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where the dimensionless parameters used are  
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where , , , , 1R R P P hs r s  and 'h  are respectively the thermal Rayleigh number, salinity Rayleigh number, the Prandtl 

numbers and the dust particle parameters. 

4. Exact solution for free boundaries 

The boundary conditions on velocity, temperature and salinity are 

 

2 * ** * * * 01 2w D w T D D S        At * 1/ 2.z                                                                                                        (28) 

 

 It may be noted that the solution can be separated into even and odd modes and on expect that even modes will give 

the lowest eigen value. Hence the solution in which *, *, *w T D are even and * is odd. 

 

 Following the analysis is similar to [20-24], the exact solutions satisfying Eq. (28) are  
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where A, B, C, E and F are constants and   is the growth rate which is complex constant. 

 Substituting of Eq. (29) in the Eqs. (23-27), one gets 
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 For the existence of non-trivial solution the determinant of co-efficient of A, B, C, E and F in Eqs. (30)- (34) must 

vanish. This determinant on calculation yields  
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 For obtaining stationary instability, the time-independent term 5T  is equal to zero. From Eq. (35) it is easy to get 

the Rayleigh number Rc. 
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 Making use of 1i 
 
in Eq. (35) leads to Rayleigh number for oscillatory instability and following Refs. [17]- 

[24]. 
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5. Results and discussion 

By considering Darcy model, the role of Soret effect on thermohaline convection in dusty ferrofluid saturating a porous 

medium in the presence of a uniform vertical magnetic field is investigated theoretically for different permeabilities in 

the range of 0.001–0.009 [18]. The present analysis has been carried out through stationary and oscillatory instabilities. 

The physical properties contributing to the non–linear effect have been omitted as the perturbation is small and a linear 

stability analysis is discussed.  

 The dust particle parameter h1 is assumed to take values from 1 to 7 [24], the range of salinity Rayleigh number RS 

is varied from 0 to 400, the Soret parameter ST is assumed to take values from -0.002 to 0.002, and M4, M5, and M6 are 

assumed to be 0.1 [24]. The magnetization parameter M1 is a ratio of magnetic to gravitational forces. M1 is taken to be 

1000 [19]. For a very large value of M1, the effect of magnetic mechanism is very large in comparison with buoyancy 

effect [17-20]. M2 is assumed to have negligible value for these types of fluids and hence taken to be zero [21]. The 

non–buoyancy magnetization parameter M3 is in the range of values from 5 to 25 because M3 cannot take value less than 

one [14-19]. The ratio of momentum diffusivity and thermal diffusivity (Prandtl number Ps) is assumed to be 0.01 and 

0.001.  
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 Fig. 1 represents the critical magnetic Rayleigh number Rc versus dust particle parameter h1 for different values of 

permeability of the porous medium k, RS = 100 and ST = - 0.002. When h1 is increased from 1 to 7, there is a fall in Rc 

due to decreasing effect of salt on the convective system. This leads to destabilize the system and the cell shape leading 

asymptotic trend. Moreover, it is clear that large values of permeability favors early onset of instability. Also, the larger 

permeability, greater the pore size tending the fluid to attain greater percolation velocity and it favors early onset of 

convection. 

 In Fig. 2, the effect of non-buoyancy magnetization parameter M3 increases from 5 to 25, the critical magnetic 

Rayleigh number Rc decreases, for different dust particle parameter h1. Thus the system gets destabilized. It is clear that, 

when M3 increases from 5 to 25, Rc decreases, indicating the onset of instability. This is because the high magnetization 

tends to release large energy to the system causing instability to set in earlier. When k = 0.001 and h1 = 1, Rc gets the 

highest values, thus the system have high energy on the onset of convection which is depicted in Figs. 1 and 2.  

 From Fig. 3, the cell shape and critical magnetic Rayleigh number Rc with respect to k, indicate that the system 

destabilizes. This is indicated by decrease in Rc. It is observed from Figs. 4 and 5 that increase in h1 destabilizes the 

system, when increasing values of Salinity Rayleigh number RS and Soret parameter ST, respectively. Also, when 

increasing values of RS from 0 to 400 and ST from -0.002 to 0.002 with respect to h1, critical magnetic Rayleigh number 

Rc gets the same and various effects.  

 In Fig. 6, the variation of Rc versus h1 for various values of Ps is shown. It is clear that there is a destabilization 

when both h1 and Ps are increased. Fig. 7 indicates the variation of Rc versus M3 for different h1. When increasing M3 

from 5 to 25 and h1 from 1 to 7, Rc is decreased. Thus, the system gets destabilization. The same effect is seen in Fig. 8. 

The magnetization of the fluid is found to destabilize the system through stationary mode.  

 Fig. 8 shows the variation of Rc with respect to k for various RS, when RS increases from 0 to 400 and k increases 

from 0.001 to 0.009, there is a decrease in Rc promoting instability. It is clear that the system has a destabilizing 

behavior. Fig. 9 gives the critical wave number ac versus M3 for different k. When k = 0.001, 0.003 and 0.005, the 

critical wave number ac gets the same values and it lead to decreasing trend. It shows also that the system has a 

destabilizing effect. But, when k = 0.007 and 0.009, system gets various energy, it lead to parabolic form and converges 

to the same point. Fig. 10 represents variation of ac versus ST for different k. It is clear that the system gets non-

equilibrium position through oscillatory mode. Due to the increasing of salt on the system for various k, the convection 

of the ferrofluid has transcendental form and it is not much pronounced with the thermal effect.  

 In some situation, the convective system has a form of oscillation which is depicted in Figs. 9 and 10 through the 

critical wave number ac. In the presence of non-buoyancy magnetization parameter M3, the convective ferromagnetic 

fluid gets an oscillation which is rather pronounced. But, introduce of Soret effect on the same, the system gets more 

oscillation is much pronounced in comparison with the Fig. 9. Therefore the system gets more destabilized because of 

wave nature of ferrofluid and due to this the Soret effect dominates the system. 
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Fig. 1: Variation of Rc versus h1 for different of k, M3 = 5, Ps = 0.01, RS = 100 and ST = -0.002. 

 

6. Conclusion 

The linear stability of Soret driven thermohaline convection in ferromagnetic fluid layer heated from below and salted 

from above saturating a porous medium subjected to a transverse uniform magnetic field has been considered. In this 

analysis, we have investigated the effect of various parameters like permeability of the porous medium, non–buoyancy 

magnetization, buoyancy magnetization, magnetic numbers, dust particle parameter, Prandtl number, thermal Rayleigh 
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number and salinity Rayleigh number on the onset of convection. Also the principle of exchange of instability is applied 

to find out the mode of attaining instability.   

 We see that convection can encourage in a ferromagnetic fluid by means of spatial variation in magnetization, 

which is induced when the magnetization of the ferrofluid depends on temperature and salinity. For the stationary 

convection, when increasing value of porous medium, there is a decreasing convection process on the system. From the 

figures, one can conclude that the non–buoyancy magnetization parameter, dust particle parameter, porous and Soret 

effects have destabilizing behavior and the Soret effect dominate the system which is depicted in Fig. 10. 
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Fig. 2: Variation of Rc versus M3 for different values of h1, Ps = 0.01, k = 0.001, RS = 100 and ST = -0.002. 
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Fig. 3: Variation of Rc versus k for different values of M3, Ps = 0.01, h1 = 1, RS = 100 and ST = - 0.002. 
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Fig. 4: Variation of Rc Versus h1 for different values of RS, Ps = 0.01, M3 = 5, k = 0.001 and ST = -0.002. 
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Fig. 5: Variation of Rc versus ST for different values of h1, Ps = 0.01, k = 0.001, M3 = 5 and RS = 100. 
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Fig. 6: Variation of Rc versus h1 for different values of Ps, k = 0.001, M3 = 5, ST = -0.002 and RS = 100. 
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Fig. 7: Variation of ac versus M3 for different values of h1,  k = 0.001, Ps = 0.01, ST = -0.002 and RS = 100. 
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Fig. 8: Variation of Rc versus k for different values of RS, M3 = 5, h1 = 1, Ps = 0.01, ST = -0.002 and RS = 100. 
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Fig. 9: Variation of ac versus M3 for different values of k, Ps = 0.01, h1 = 1, ST = -0.002 and RS = 100. 
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