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Abstract 
 

In this paper, we mainly study the minimal presentations of numerical semigroups. Moreover, we examine the concept of gluing, com-

plete intersection, catenary degree, elasticity of some numerical semigroups. 
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1. Introduction 

The object of this paper is to study the presentations of finitely generated numerical semigroups. The study of presentations of numerical 

semigroups are mainly motivated by its applications to Algebraic Geometry ([1], [2]). Redei in [3] shows that every congruence on ℕn is 

finitely generated. This result is since then known as Redei’s Theorem. Many other authors have given alternative and quite much 

simpler proofs than his [4 - 7]. Since numerical semigroups are cancellative monoids, a different approach can be chosen to prove 

Redei’s theorem. An important peculiarity of finitely generated cancellative (commutative) monoids is that minimal presentations with 

respect to set inclusion have minimal cardinality ( [8] ). In this paper, we focus on the computation of a (and in fact all) minimal 

presentation of a numerical semigroup. The idea comes from Rosales’ PhD Thesis ([9]) and was published later in [10]. The cardinality 

of a numerical semigroup cannot be bounded in terms of its embedding dimension. This follows from Bresinsky’s family of embedding 

dimension four numerical semigroups, which have arbitrarily large minimal presentations ( [11]). In this paper we offer an upper bound 

for the cardinality of a minimal presentation in terms of the multiplicity of the semigroup. 

2. Presentations of a numerical semigroup 

2.1. Class modulo and quotient set  

Let X be a nonempty set. A binary relation on X is a subset σf X × X . If (a, b) ∈ σ, we write xσy and we say that x is σ- related with y. If 

σ- is reflexive (aσa for all a ∈ X) symmetric (aσb) implies (bσa) and transitive (aσb and bσa), (aσb and bσc implies aσc) then we say 

that σ is an equivalence binary relation. For every a ∈ X, we define its class modulo σ called its σ- class as  

 

[a]σ = {b ∈ X | aσb}                                                                                                                                                                                      (1) 

 

The set 

 
X

σ
= { [a]σ|a ∈ X }                                                                                                                                                                                          (2) 

 

is the quotient set of X by σ, and it is a partition of X. 

2.2. Congruence 

A congruence σ is generated by ρ if σ = Cong(ρ). We say that 𝜌 is a system of generators of σ. A congruence σ is finitely generated if 

there exists a system of generators of σ with finitely many elements. A presentation of a finitely generated monoid M is a congruence on 

Free(X), for some finite set X, such that M ≅ Free(X)/Cong(ρ). We say that M is finitely presented monoid if ρ is finite. Let X be a 

nonempty set and let σ be a congruence on Free(X). An element (aσb) in σ{(0,0)} is irreducible if it cannot be expressed as 

 
(a, b) = (a1, b1) + (a2, b2)                                                                                                                                                                          (3) 

 

with, (a1, b1), +(a2, b2) ∈ σ\{(0,0)}.  
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Let Irr(σ) be the set of irreducible elements of σ. Note that σ is a submonoid of Free(X) × Free(X). Let M be a monoid and σ a 

congruence on M. Then 
M

σ
 is a monoid with the operation 

 
[a]σ + [b]σ = [a + b]σ                                                                                                                                                                                  (4) 

 

if (a, b) and(c, d) are in σ, so is (a + c, b + d), and by reflexivity (0,0) ∈ σ. As we see next, Irr(σ) generates σ as a monoid. 

2.3. Minimal presentations of a numerical semigroup 

Let ℕ be the set of non-negative integers and ℤ be the set of integers. A numerical semigroup is a finitely generated sub-semigroup S of 

ℕ such that 0 ∈ S and S generates ℤ as a group. It is known that S is a numerical semigroup if and only if there exist n0, … , nk ∈ ℕ\{0} 

such that gcd {n0, … , nk} = 1 and S = ⟨n0, … ,nk⟩ = {∑ mini|mi
k
i=0 ∈ ℕ}. 

Every numerical semigroup is a finitely generated cancellative monoid and thus it is finitely presented. We characterize in this section 

those presentations of numerical semigroups that are minimal. Let σ be a congruence on Free(X1, X2, … , Xn) and let ρ be a system of 

generators of σ. We say that ρ is a minimal relation if the cardinality of ρ is the least possible among the cardinalities of systems of 

generators of σ. Let S be a numerical semigroup minimally generated by {n1, … , ne} and let X = {x1, … , xe} with xi ≠ xj for all i ≠ j.  

 

We say that ρ is a minimal presentation if ρ is a minimal relation of the kernel congruence of 

 

φ: Free(x1, … , xe) → S, φ(a1x1 + ⋯ + aexe) = a1n1 + ⋯ + aene                                                                                                             (5) 

 

In this section,we use σ to denote the kernel congruence of φ. Given n ∈ ℕ the set of expressions of n in S is defined as 

 

Zn = φ−1(n) = {a1x1 + ⋯ + aexe|a1n1 + ⋯ + aene = n}                                                                                                                         (6) 

 

For a = a1x1 + ⋯ + aexe ∈ Free(x1, … , xn), b = b1x1 + ⋯ + bexe ∈ Free(x1, … , xn). Define the dot product of 𝑎 and 𝑏 as  

 

𝑎. 𝑏 = 𝑎1𝑏1 + ⋯ + 𝑎𝑒𝑏𝑒                                                                                                                                                                                (7) 

 

We define the following relation on 𝐹𝑟𝑒𝑒(𝑥1, … , 𝑥𝑛). For 𝑎, 𝑏 ∈ 𝐹𝑟𝑒𝑒(𝑥1, … , 𝑥𝑛), 𝑎𝑅𝑏 if either 𝑎 = 𝑏 = 0 or there exist 𝑘1, … , 𝑘𝑙 ∈ 𝑍𝑛 

for some 𝑛 ∈ 𝑆 such that 𝑘1 = 𝑎, 𝑘𝑙 = 𝑏 and 𝑘𝑖 . 𝑘𝑖+1 ≠ 0 for all 𝑖 ∈ {1, … , 𝑙 − 1}. This is an equivalence binary relation on 𝐹𝑟𝑒𝑒(𝑋). 

The elements of 𝐹𝑟𝑒𝑒(𝑋)/𝑅 are called 𝑅- classes. A (nondirected) graph 𝐺 is a pair (𝑉, 𝐸) where 𝑉 is a set whose elements are known as 

the vertices of 𝐺 and 𝐸 is a subset of {{𝑢, 𝑣}|𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣}. The unordered pair {𝑢, 𝑣} will be denoted as 𝑢𝑣̅̅̅̅ , and if it belongs to 𝐸, 

then we say that it is an edge of 𝐺. 

A sequence of edges of the form 𝑣𝑜𝑣1̅̅ ̅̅ ̅̅ , 𝑣1𝑣2̅̅ ̅̅ ̅̅ , … , 𝑣𝑚−1𝑣𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is known as a path of length 𝑚 connecting them. It is well known that a 

connected graph with 𝑛 vertices has at least 𝑛 − 1 edges ([12]). A tree is a connected graph with 𝑛 vertices and 𝑛 − 1 edges for some 

positive integer 𝑛 (this is one of the many characterizations of a tree).  

A subgraph of the graph 𝐺 = (𝑉, 𝐸) is a graph 𝐺′ = (𝑉′, 𝐸′) such that 𝑉′ ⊆ 𝑉 and 𝐸′ ⊆ 𝐸. It is also well known that any connected 

graph 𝐺 with 𝑛 vertices has a subgraph with the same vertices that is a tree. This tree is called the generating tree of 𝐺. 

Let 𝑋 be a nonempty set, let 𝑃 = {𝑋1, … , 𝑋𝑟} be a partition of 𝑋 and let 𝛾 be a binary relation on 𝑋. The graph associated to 𝛾 with 

respect to the partition 𝑃 is 𝐺𝛾 = (𝑉, 𝐸), where 𝑉 = 𝑃 and 𝑋𝑖𝑋𝑗
̅̅ ̅̅ ̅̅ ∈ 𝐸 with 𝑖 ≠ 𝑗 if there exists 𝑥 ∈ 𝑋𝑖  and 𝑦 ∈ 𝑋𝑗  such that (𝑥, 𝑦) ∈ 𝛾 ∪

𝛾−1. Let 𝑛 ∈ ℕ and let 𝑋1, … , 𝑋𝑟 be the 𝑅- classes contained in 𝑍(𝑛). 

 

If 𝛽  is a binary relation on 𝐹𝑟𝑒𝑒(𝑥1, … , 𝑥𝑒) , we denote by  𝛽𝑛 = 𝛽 ∩ (𝑍𝑛 × 𝑍𝑛), and by 𝐺𝛽𝑛 the graph associated to the partition 

{𝑋1, … , 𝑋𝑟} of 𝑍(𝑛). As we see next, these graphs are crucial for our characterization of minimal presentations of a numerical semigroup. 

 

Lemma 2.4: Let 𝑛 ∈ ℕ. If 𝛽 is a binary relation on 𝐹𝑟𝑒𝑒(𝑥1, … , 𝑥𝑒) generating 𝜎, then 𝐺𝛽𝑛
 is connected. 

 

Theorem 2.5: Let 𝛽 be a binary relation on 𝐹𝑟𝑒𝑒(𝑥1, … , 𝑥𝑒) with 𝑥𝑖 ≠ 𝑥𝑗  for 𝑖 ≠ 𝑗. Then 𝜎 = 𝐶𝑜𝑛𝑔(𝛽) if and only if 𝐺𝛽𝑛
 is connected 

for all 𝑛 ∈ ℕ. 

 

Corollary 2.6: Let 𝑆 be a numerical semigroup. A subset 𝛽 of 𝜎 is a minimal presentation of 𝑆 if and only if the cardinality of 𝛽𝑛 equals 

the number of 𝑅-classes in 𝑍(𝑛) minus one and 𝐺𝛽𝑛
 is connected for all 𝑛 ∈ 𝑆. 

 

Corollary 2.7: The concept of minimal presentation with respect to cardinality and set inclusion coincide for any numerical semigroup. 

In particular , all minimal presentations have
 
the same cardinality. 

2.8. Computing minimal presentations 

𝑆 =< 𝑛1, … , 𝑛𝑒 > and 𝜎 are as in the preceding section. Let 𝑛 be an element of 𝑆. If 𝑋1, … , 𝑋𝑟 are the 𝑅-classes of 𝑍(𝑛), for all 

 𝑖 ∈ {1, … , 𝑟} define  

 

𝐴𝑖 = {𝑛𝑗|𝑥𝑗 ≤ 𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝑋𝑖}                                                                                                                                                               (8) 

 

These sets contain the set of vertices of the different connected components of 𝐺𝑛. To prove this, we first must show that {𝐴1, … , 𝐴𝑟} is a 

partition of 𝑉𝑛. 

 

Theorem 2.9: Let 𝑆 be a numerical semigroup and let 𝑛 be a nonzero element of 𝑆. The number of connected components of 𝐺𝑛 equals 

the number of 𝑅-classes in 𝑍(𝑛). 
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Proposition 2.10: If 𝐺𝑛 is not connected, then 𝑛 = 𝑤 + 𝑛𝑗  with 𝑤 ∈ 𝐴𝑝(𝑆, 𝑛1)\{0} and 𝑗 ∈ {2, … , 𝑒}. 

 

Example 2.11: Assume now that 𝑆 is minimally generated by {𝑛1, 𝑛2, 𝑛3}. For every 𝑟 ∈ {1,2,3}, define  

 

𝑐𝑟 = 𝑚𝑖𝑛{𝑐 ∈ ℕ{0} |𝑘𝑛𝑟
∈< 𝑛𝑠 , 𝑛𝑡 >, {𝑟, 𝑠, 𝑡} = {1,2,3}}                                                                                                                           (9) 

 

For 𝑛 ∈ {𝑐1𝑛1, 𝑐2𝑛2, 𝑐3𝑛3}, the graph 𝐺𝑛 is not connected,and these are the only elements in 𝑆 fulfilling this condition. We distinguish 

three cases. 

 

If 𝑐1𝑛1 = 𝑐2𝑛2 = 𝑐3𝑛3, then {(𝑐1𝑥1, 𝑐2𝑥2), (𝑐1𝑥1, 𝑐3𝑥3)}  is a minimal presentation for 𝑆. 

 

 Assume now that 𝑐1𝑛1 ≠ 𝑐2𝑛2 = 𝑐3𝑛3 (we omit the other similar cases). If 𝑐1𝑛1 = ⅄𝑛2 + 𝜇𝑛3with ⅄, 𝜇 ∈ ℕ, then 

{(𝑐1𝑥1, ⅄𝑥2 + 𝜇𝑥3), (𝑐2𝑥2, 𝑐3𝑥3)} is a minimal presentation for 𝑆. If the cardinality of {𝑐1𝑛1, 𝑐2𝑛2, 𝑐3𝑛3} is there, then suppose that  

 

𝑐1𝑛1 = 𝑟12𝑛2 + 𝑟13𝑛3, 𝑐2𝑛2 = 𝑟21𝑛1 + 𝑟23𝑛3, 𝑐3𝑛3 = 𝑟31𝑛1 + 𝑟32𝑛2                                                                                                      (10) 

 

for some nonnegative integers 𝑟𝑖𝑗. Then 

 

{(𝑐1𝑥1, 𝑟12𝑥2 + 𝑟13𝑥3) , ( 𝑐2𝑥2, 𝑟21𝑥1 + 𝑟23𝑥3) ,(𝑐3𝑥3, 𝑟31𝑥1 + 𝑟32𝑥2)}                                                                                                    (11) 

 

 is a minimal presentation for 𝑆. 

 

Theorem 2.12: Let 𝑆 be a numerical semigroup minimally generated by {𝑛1, … , 𝑛𝑒}. The cardinality of any minimal presentation for 𝑆 is 
less than or equal to  

 
(2𝑛1−𝑒+1)(𝑒−2)

2
+ 1                                                                                                                                                                                        (12) 

 

Corollary 2.13: Let 𝑆 be a numerical semigroup. The cardinality of any minimal presentation for 𝑆 is less than or equal to 

 
𝑚(𝑆).(𝑚(𝑆)−1)

2
                                                                                                                                                                                                 (13) 

3. Factorizations and divisibility 

For a factorization 𝑥 = {𝑥1, … , 𝑥𝑛} of is its length is defined as |𝑥| = 𝑥1 + ⋯ + 𝑥𝑝 .                                                                                                                                                                             

The set of 𝑠 is 𝐿(𝑠) = { |𝑥|| 𝑥 ∈ 𝑍(𝑠)} .                                                                                                                                                                              

 

Theorem 3.1: Let 𝑆 be a numerical semigroup minimally generated by {𝑛1, … , 𝑛𝑝} with 𝑛1 < ⋯ < 𝑛𝑝. Then  

 

𝜌(𝑆) =
𝑛𝑝

𝑛1
                                                                                                                                                                                                     (14) 

 

Assume that 𝐿(𝑠) = {𝑙1 < ⋯ < 𝑙𝑘}. Define the delta set of 𝑠 as  

 

∆(𝑠) = {𝑙2 − 𝑙1, … , 𝑙𝑘 − 𝑙𝑘−1}                                                                                                                                                                     (15) 

 

and if 𝑘 = 1, ∆(𝑠) = ∅  

 

The delta set of 𝑆 is defined as  

 

∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 .                                                                                                                                                                                       (16) 

 

Theorem 3.2: Let 𝑆 be a numerical semigroup and let 𝜎 be a presentation of 𝑆. Then  

 

𝑚𝑖𝑛∆(𝑆) = 𝑔𝑐𝑑{|𝑎 − 𝑏|| (𝑎, 𝑏) ∈ 𝜎}                                                                                                                                                         (17) 

 

Definition 3.3: Let 𝑆 be a numerical semigroup and 𝑚 ∈ 𝑆, 𝑥, 𝑦 ∈ 𝑍𝑆(𝑚), 𝑀 ∈ ℕ. In this case, an 𝑀-chain from 𝑥 to 𝑦 is such 

 that 𝑥1 = 𝑥, 𝑥𝑖 = 𝑦 and 𝑑(𝑥𝑗 , 𝑥𝑗+1) ≤ 𝑀 for each 𝑗 ∈ {1, … , 𝑖 − 1}. The multiplier of 𝑚 is 𝑥1, … , 𝑥𝑖 ∈ 𝑍𝑆(𝑚) [13]. 

 

Definition 3.4: Let 𝑆 be a numerical semigroup and 𝑚 ∈ 𝑆, 𝑥, 𝑦 ∈ 𝑍𝑆(𝑚), 𝑀 ∈ ℕ. In this case, the catenary degree of 𝑚 is the smallest 

of the 𝑀 −chains that exist from 𝑥 to 𝑦. In addition, the catenary grade of 𝑚 is indicated by 𝑐(𝑚) and the catenary degree set of the 

numerical half group of 𝑆 is indicated by 𝐶(𝑆) = {𝑐(𝑠)|𝑠 ∈ 𝑆} [13].  
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4. Minimal presentations 

4.1. Generators and relations 

Let 𝑆 be a numerical semigroup minimally generated by {𝑛1, 𝑛2, … , 𝑛𝑝}. Then the monoid morphism 

 

𝜑: ℕ𝑝 → 𝑆, 𝜑(𝑎1, … , 𝑎𝑝) = ∑ 𝑎𝑖𝑛𝑖
𝑝
𝑖=1 ,                                                                                                                                                        (18) 

 

known as the factorization homomorphism of 𝑆, is an epimorphism, and consequently 𝑆 is isomorphic to ℕ𝑝/ 𝑘𝑒𝑟 𝜑, where 𝑘𝑒𝑟 𝜑 is the 

kernel congruence of 𝜑: 
 

𝑘𝑒𝑟 𝜑 = {(𝑎, 𝑏) ∈ ℕ𝑝 × ℕ𝑝|𝜑(𝑎) = 𝜑(𝑏)}.                                                                                                                                               (19) 

 

Notice that for groups, vector spaces, rings…the kernel is defined by the elements mapping to the identity element. This is because there 

we have inverses and from 𝑓(𝑎) = 𝑓(𝑏) we get 𝑓(𝑎 − 𝑏) = 0.  
Given 𝜏 ⊂ ℕ𝑝 × ℕ𝑝, the congruence generated by 𝜏 is the smallest congruence on ℕ𝑝 containing 𝜏, that is, it is the intersection of all 

congruences containing 𝜏. We denote by 𝑐𝑜𝑛𝑔(𝜏) the congruence generated by 𝜏. Accordingly, we say that 𝜏 is a generating system of a 

congruence 𝜎 on ℕ𝑝 if 𝑐𝑜𝑛𝑔(𝜏) = 𝜎. The congruence generated by a set is precisely the reflexive, symmetric, transitive closure (this 

would just maket he closure an equivalence relation), to which we adjoin all pairs (𝑎 + 𝑐, 𝑏 + 𝑐) whenever (𝑎, 𝑏) is in the closure; so that 

the resulting relation becomes a congruence. This can be formally written as follows. 

 Proposition 4.2: Let 𝜌 ⊆ ℕ𝑝 × ℕ𝑝. Define 𝜌0 = 𝜌 ∪ {(𝑏, 𝑎)|(𝑎, 𝑏) ∈ 𝜌} ∪ {(𝑎, 𝑎)|𝑎 ∈ ℕ𝑝}, 𝜌1 = (𝑣 + 𝑢, 𝑤 + 𝑢), (𝑣, 𝑤) ∈ 𝜌0, 

𝑢 ∈ ℕ𝑝. Then 𝑐𝑜𝑛𝑔(𝜌) is the set of pairs (𝑣, 𝑤) ∈ ℕ𝑝 × ℕ𝑝  such that there exist 𝑘 ∈ ℕ and 𝑣0, … , 𝑣𝑘 ∈ ℕ𝑝  with 𝑣0 = 𝑣,  𝑣𝑘 = 𝑤 and 

(𝑣𝑖 , 𝑣𝑖+1) ∈ 𝜌1 for all 𝑖 ∈ {0, … , 𝑘 − 1}. 

4.3. Free numerical semigroups 

In this section, we recall the concept of free numerical semigroup and show how to compute a presentation for these semigroups. Let 𝑆 

be the semigroup generated by {𝑟0, … , 𝑟ℎ}. Set 𝑑1 = 𝑟0  and 𝑑𝑘 = 𝑔𝑐𝑑 (𝑑𝑘−1, 𝑟𝑘−1) for all 𝑘 ∈ {2, … , ℎ + 1} (whence 𝑑ℎ+1 = 1), and 

define 𝑒𝑘 = 𝑑𝑘/𝑑𝑘+1. Recall that 𝑆 is free for the arrangement (𝑟0, … , 𝑟ℎ) of generators if for all 𝑘 ∈ {1, … , ℎ}: 

 

i)   𝑒𝑘 > 1, 

 

ii)  𝑒𝑘𝑟𝑘 belongs to the semigroup generated by {𝑟𝑜, … , 𝑟𝑘−1}. 
 

Definition 4.4: Let 𝑆 be a numerical semigroup and let 𝑛 be one of its nonzero elements. The apery set of 𝑛 in 𝑆 is  

 

𝐴𝑝(𝑆, 𝑛) = {𝑠 ∈ 𝑆 | 𝑠 − 𝑛 ∉ 𝑆 }.                                                                                                                                                                 (20) 

 

Definition 4.5: Let 𝑆 be a numerical semigroup. The cardinality of a minimal set of generators of 𝑆 is called the embedding dimension of 

𝑆. We denote it by 𝑒(𝑆). 
 

Definition 4.6: Let 𝑆∗ = 𝑆 \ {0} . The smallest nonzero element of 𝑆 is called the multiplicity of 𝑆, 𝑚(𝑆) = 𝑚𝑖𝑛 𝑆∗. 

 

Definition 4.7: The idea of gluing is the following, 𝐴 set of positive integers 𝐴, which is usually taken as the set of generators of a 

monoid, is the gluing of 𝐴1 and 𝐴2 if {𝐴1, 𝐴2 } is a partition of 𝐴 and the monoid generated by 𝐴 admits a presentation in which some 

relators only involve generators in 𝐴1, other relators only involve generators in 𝐴2 and there is only one element in this presentation 

relating elements in 𝐴1 with elements in 𝐴2. In order to formalize this definition we need to recall and introduce some notation. 

Let 𝐴 = {𝑚1, … , 𝑚𝑟} be a subset of positive integers,𝑋 = {𝑥1, … , 𝑥𝑟}. 𝜑: 𝐹𝑟𝑒𝑒(𝑋) → ℕ the monoid homomorphism.  
𝜑(𝑎1𝑥1 + ⋯ + 𝑎𝑟𝑥𝑟) = 𝑎1𝑚1 + ⋯ + 𝑎𝑟𝑚𝑟. Denote by 𝜎 the kernel congruence of 𝜑, that is, 𝑎𝜎𝑏 if and only if 𝜑(𝑎) = 𝜑(𝑏). For 𝐵 ⊆
𝐴, set 𝑋𝐵 = {𝑥𝑖| 𝑚𝑖 ∈ 𝐵}. Then 𝐹𝑟𝑒𝑒(𝑋𝐵) ⊆ 𝐹𝑟𝑒𝑒(𝑋). We define 𝜑𝐵 and 𝜎𝐵 accordingly. Note that 𝜎𝐵 ⊆ 𝜎. With this notation is now 

easy to express the concept of gluing. Let {𝐴1, 𝐴2} be a partition of 𝐴. We say that 𝐴 is the gluing of 𝐴1 and 𝐴2 if there exists a system of 

generators 𝜌 of 𝜎 such that 𝜌 = 𝜌1 ∪ 𝜌2 ∪ {(𝑎, 𝑏)} with 𝜌1 ⊆ 𝜎𝐴1
, 𝜌2 ⊆ 𝜎𝐴2

, 0 ≠ 𝑎 ∈ 𝐹𝑟𝑒𝑒(𝑋𝐴1
) and 0 ≠ 𝑏 ∈ 𝐹𝑟𝑒𝑒(𝑋𝐴2

) . 

 

Definition 4.8: Let 𝑆 be a numerical semigroup and let 𝑛 be one of its nonzero elements. If one of the minimal representatives of 𝑆 if the 

number of elements 𝑒(𝑆) − 1, S is called the complete intersection. 

5. Examples 

5.1. Example  

Let 𝑺 = ⟨𝟔, 𝟒, 𝟏𝟕⟩ 

 

𝐴𝑝(𝑆, 4) = {0,6,17,23},  
 

Betti set {12,23,29,34,40}.  
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Hence, we look at the graphs 𝐺𝑛, with 𝑛 in the set {12,23,29,34,40}. 

 
Graph Connected components Relations 

𝐺12 {6}, {4} {2𝑥1, 3𝑥2} 

𝐺23 {6,17} {𝑥1 + 𝑥3} 

𝐺29 {6,17}, {4,17} {2𝑥1 + 𝑥3, 3𝑥2 + 𝑥3} 

𝐺34 {6,4}, {17}, {6,4} {5𝑥1 + 𝑥2, 2𝑥3, 𝑥1 + 7𝑥2} 
𝐺40 {4}, {6,17}, {6,4} {10𝑥2, 𝑥1 + 2𝑥3, 4𝑥1 + 4𝑥2} 

 

Hence a minimal presentation for 𝑆 is 

 

𝜌 = {((2,0,0), (0,3,0)), ((5,1,0), (0,0,2))}  

 

ʋ(𝑆) = 2, 𝑒(𝑆) = 3, ʋ(𝑆) = 𝑒(𝑆) − 1 it is a complete intersection, since 𝐴1 = 〈6,4〉 ve 𝐴2 = 〈17〉 are gluings of 𝑆. 𝐿(12) = {2,3},  

 

∆(12) = {1}, 𝜌(12) =
3

2
, 𝐿(23) = {2}, ∆(23) = ∅, 𝐿(29) = {3,4} 

 

∆(29) = {1}, 𝜌(29) =
4

3
 , 𝐿(34) = {2,6,7,8}, ∆(34) = {1,4}, 𝜌(34) = 4, 𝐿(40) = {3,7,8,9,10} 

 

∆(40) = {1,4}, 𝜌(40) =
10

3
, ∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 = {1,4}, 𝜌(𝑆) = 𝑠𝑢𝑝{𝜌(𝑠)|𝑠 ∈ 𝑆} = 4. 

 

𝐺34  

 

 
Catenary degree of 34 is 3. 

 

Example 5.2. 

Let 𝑆 = 〈5,7,11,13〉  
𝐴𝑝(𝑆, 5) = {0,7,11,13,14},  

Betti set {14,18,20,21,22,24,25,26,27}.  

Hence, we look at the graphs 𝐺𝑛, with 𝑛 in the set {14,18,20,21,22,24,25,26,27}. 

 
Graph Connected components Relations 

𝐺14  {7} {2𝑥2} 

𝐺18 {5,13}, {7,11} {𝑥1 + 𝑥4, 𝑥2 + 𝑥3} 

𝐺20 {5}, {7,13} {4𝑥1, 𝑥2 + 𝑥4} 

𝐺21 {7}, {5,11} {3𝑥2, 2𝑥1 + 𝑥3} 

𝐺22 {5,7}, {11} {3𝑥1 + 𝑥2, 2𝑥3} 

𝐺24 {11,13}, {5,7} {𝑥3 + 𝑥4, 2𝑥1 + 2𝑥2} 

𝐺25 {5}, {5,7,13}, {7,11} {5𝑥1, 𝑥1 + 𝑥2 + 𝑥4, 2𝑥2 + 𝑥3} 

𝐺26 {13}, {5,11}, {7,11} {2𝑥4, 3𝑥1 + 𝑥3} 

𝐺27 {5,7}, {7,13}, {5,11} {4𝑥1 + 𝑥2, 2𝑥2 + 𝑥4, 𝑥1 + 2𝑥3} 

 

Hence a minimal presentation for 𝑆 is 

 

𝜌 = {((1,0,0,1), (0,1,1,0)), ((4,0,0,0), (0,1,0,1)), ((0,3,0,0), (2,0,1,0)), ((3,1,0,0), (0,0,2,0))  

 

((0,0,1,1), (2,2,0,0)), ((5,0,0,0), (0,2,1,0)), ((0,0,0,2), (3,0,1,0)), ((0,2,0,1), (1,0,2,0))}  

 

ʋ(𝑆) = 8, 𝑒(𝑆) = 4, since ʋ(𝑆) ≠ 𝑒(𝑆) − 1 it is not complete intersection. 𝐿(14) = {2}, ∆(14) = ∅, 

 

 𝐿(18) = {2}, ∆(18) = ∅, 𝐿(20) = {2,4}, ∆(20) = {2}, 𝜌(20) = 2, 𝐿(21) = {3},  

 

∆(21) = ∅, 𝐿(22) = {2,4}, ∆(22) = {2}, 𝜌(22) = 2, 𝐿(24) = {2,4}, ∆(22) = {2}, 𝜌(22) = 2, 

 

 𝐿(26) = {2,4}, ∆(26) = {2}, 𝜌(26) = 2, 𝐿(27) = {3,5}, ∆(27) = {2}, 𝜌(27) =
5

3
, 

 

∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 = {2},𝜌(𝑆) = 𝑠𝑢𝑝{𝜌(𝑠)|𝑠 ∈ 𝑆} = 2. 

(𝟓, 𝟏, 𝟎) 

(𝟑, 𝟒, 𝟎) 

 3 

 
(𝟏, 𝟕, 𝟎) 

3 
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𝐺25 

 

 
 

Catenary degree of 25 is 4. 

 

Example 5.3. 

Let 𝑆 = 〈2,3〉. 
𝐴𝑝(𝑆, 2) = {0,3} 

Betti Elements 

{6} 

Hence, we look at the graphs 𝐺𝑛, with 𝑛 in the set {6}. 

 
Graph Connected components Relations 

𝐺6 {2}, {3} {3𝑥1}, {2𝑥2} 

 

Hence a minimal presentation for 𝑆 is 

 

𝜌 = {((3,0), (0,2))} . 

 

ʋ(𝑆) = 1, 𝑒(𝑆) = 2, since ʋ(𝑆) = 𝑒(𝑆) − 1 it is not complete intersection. 𝐴1 = 〈2〉 and 𝐴2 = 〈3〉 is a gluing of 𝑆. 𝐿(6) = {2,3}, ∆(6) =

{1}, 𝜌(6) =
3

2
, ∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 = {1}, 𝜌(𝑆) = 𝑠𝑢𝑝{𝜌(𝑠)|𝑠 ∈ 𝑆} =

3

2
 

 

𝐺6  

 

.  

 

 

Example 5.4. 

 

Let 𝑆 = 〈3,5,7〉. 
𝐴𝑝(𝑆, 3) = {0,5,7} 

Betti Elements 

{10,12,14} 

Hence, we look at the graphs 𝐺𝑛, with 𝑛 in the set {10,12,14}. 

 
Graph Connected components Relations 

𝐺10 {3,7}, {5} {𝑥1 + 𝑥3}, {2𝑥2} 
𝐺12 {3}, {5,7} {4𝑥1}, {𝑥2 + 𝑥3} 
𝐺14 {3,5}, {7} {3𝑥1 + 𝑥2}, {2𝑥3} 

 

Hence a minimal presentation for 𝑆 is 

 

𝜌 = {((1,0,1), (0,2,0)), ((4,0,0), (0,1,1)), ((3,1,0), (0,0,2))}  

 

ʋ(𝑆) = 3, 𝑒(𝑆) = 3, since ʋ(𝑆) ≠ 𝑒(𝑆) − 1 it is not complete intersection. 𝐿(10) = {2} ∆(10) = ∅, 

 

 𝐿(12) = {2,4}, ∆(12) = {2}, 𝜌(12) = 2, 𝐿(14) = {2,4}, ∆(14) = {2}, 𝜌(14) = 2, 

 

∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 = {2}, 𝜌(𝑆) = 𝑠𝑢𝑝{ 𝜌(𝑠)|𝑠 ∈ 𝑆} = 2 

 

 

 

 

 

(𝟓, 𝟎, 𝟎, 𝟎) 

(𝟎, 𝟐, 𝟏, 𝟎) 

(𝟏, 𝟏, 𝟎, 𝟏) 

2 

𝟒 

(3,0). 
. (0,2) 
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𝐺12  

 

6. Affine semigroups having a unique betti element 

Example 6.1. 

 

Let 𝑆 = 〈ℕ2〉  
 

𝐴 = (
2 0 1
0 2 1

), 𝑆1 = 𝑁 (
2
0

) + 𝑁 (
0
2

), 𝑆2 = 𝑁 (
1
1

), 𝐵𝑒𝑡𝑡𝑖(𝑆) = 𝐵𝑒𝑡𝑡𝑖(𝑆1) ∪ 𝐵𝑒𝑡𝑡𝑖(𝑆2) ∪ {𝑑}. 

 

If 𝑆 is a free affine semigroup,then 𝐵𝑒𝑡𝑡𝑖(𝑆) = ∅, 𝑑 ∈ 𝑆1 ∩ {𝑆2\{0}}, 𝑑 = (
2
2

), 

 

𝐵𝑒𝑡𝑡𝑖(𝑆1) = 𝐵𝑒𝑡𝑡𝑖(𝑆2) = ∅, since 𝑆 is a gluing of 𝑆1 and 𝑆2 , 𝐵𝑒𝑡𝑡𝑖(𝑆) = 𝑑 = (
2
2

) 

 

Hence a minimal presentation for 𝑆 is 

 

𝜌 = {((1,1,0), (0,0,2))}  

 

𝐴 is a matrix of type 𝑟 × 𝑝, ʋ(𝑆) = 1, since ʋ(𝑆) = 𝜌 − 𝑟𝑎𝑛𝑘(𝐴) = 3 − 2 = 1 it is a complete intersection, 𝐿 (
2
2

) = {2}, ∆ (
2
2

) = ∅, 

∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 = ∅. 

 

Example 6.2. 



















=

110100

101010

011001

000111

A

 

 





















+





















=

1

1

0

0

0

0

1

1

1S

 

 





















+





















=

1

0

1

0

0

1

0

1

2S

 

 





















+





















=

0

1

1

0

1

0

0

1

3S

 
 

 𝑆 is a gluing of 𝑆1 , 𝑆2 and 𝑆3 . 𝐵𝑒𝑡𝑡𝑖(𝑆) = 𝑑 = {(1,1,1,1)}. 

 

Hence a minimal presentation for 𝑆 is 

 

𝜌 = {((1,0,0,0,0,1), (0,1,0,0,1,0), (0,0,1,1,0,0))}  

 

𝐴 , 𝑟 × 𝑝 türünde bir matris. ʋ(𝑆) = 1, since ʋ(𝑆) ≠ 𝜌 − 𝑟𝑎𝑛𝑘(𝐴) it is not a complete intersection. 

 

𝐿((1,1,1,1)) = {2}, ∆((1,1,1,1)) = ∅, ∆(𝑆) = ⋃ ∆(𝑠)𝑠∈𝑆 = ∅. 

 

 

 

 

 

 

. 
 (4,0,0) 

. 
(0,1,1) 
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Table 1: Data Table of Numerical Semi-Groups in Examples 

Semigroup Betti elements Gluing 
Complete 

Intersection 
   Elasticity 

Catenary 

Degree 
Delta 

S=<6,4,17> {12,23,29,34,4} 
𝐴1 =< 6,4 > 
𝐴2 =< 17 > 

yes            4 6 {1,4} 

S=<5,7,11,13> {14,18,20,21,22,24,25,26,27} Don’t writing no             2 5 {2} 

S=<2,3> {6} 
𝐴1 =< 2 > 

𝐴2 =< 3 > 
yes 3/2 3 {1} 

S=<3,5,7> {10,12,14} Don’t writing no              2 4 {2} 

Acknowledgement 

Our thanks to the Prof.Pedro Garcia Sanchez who have contributed towards development of the article. 

References 

[1] V. Barucci, Valentina Numerical semigroup algebras, in Multiplicative ideal theory in commutative algebra, 39-53, Springer, New York, 2006. 
“available online : https://doi.org/10.1007/978-0-387-36717-0_3” . 

[2] V. Barucci, D. E. Dobbs, M.Fontana, Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically 

Irreducible Local Domains, Memoirs of the Amer. Math. Soc. 598 (1997). “available online : https://doi.org/10.1090/memo/0598” . 
[3] L. Redei, The theory of finitely generated commutative semigroups, Pergamon, Oxford-Edinburgh-New York, 1965.  

[4] P. Freyd, Redei’s finiteness theorem for commutative semigroups, Proc. Amer. Math. Soc. 19 (1968), 1003. “available online : 

https://doi.org/10.1090/S0002-9939-1968-0227290-4”. 
[5] P. A. Grillet, A short proof of Redei’s theorem, Semigroup Forum 46 (1993), 126-127.”available online :  https://doi.org/10.1007/BF02573555”. 

[6] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193. “available online : 
https://doi.org/10.1007/BF01273309”. 

[7] J. C. Rosales, Function minimum associated to a congruence on integral n-tuple space, Semigroup Forum 51 (1995) 87-95. “available online : 

https://doi.org/10.1007/BF02573622”. 
[8] J. C. Rosales, P.A. Garcia-Sanches, J.M. Urbano-Blanco, On presentations of commutative monoids, Internat. J. Algebra Comput. 9 (1999), no. 5, 

539-553. “available online :  https://doi.org/10.1142/S0218196799000333”. 

[9] J. C. Rosales, Semigrupos numericos, Tesis Doctoral, Universidad de Granada, Spain, 2001. 
[10] J. C. Rosales, An algorithmic method to compute a minimal relation for any numerical semigroup, Internat. J. Algebra Comput. 6 (1996), no. 4, 

441-455.” available online :  https://doi.org/10.1142/S021819679600026X”. 

[11] H. Bresinsky, On prime ideals with generic zeo 𝑥𝑖 = 𝑡𝑛𝑖 , Proc. Amer. Math. Soc. 47 (1975), 329-332. “available online : 

https://doi.org/10.2307/2039739”. 

[12] D. Narsingh, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall Series in Automatic Computation, 1974. 
[13] (Assi ve Garcia-Sanchez, 2014; Chapman ve ark., 2016; O’Neil ve ark., 2016). 

 

https://doi.org/10.1007/978-0-387-36717-0_3
https://doi.org/10.1090/memo/0598
https://doi.org/10.1090/S0002-9939-1968-0227290-4
https://doi.org/10.1007/BF02573555
https://doi.org/10.1007/BF01273309
https://doi.org/10.1007/BF02573622
https://doi.org/10.1142/S0218196799000333
https://doi.org/10.1142/S021819679600026X
https://doi.org/10.2307/2039739

