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Abstract

Closed form analytical expressions for displacements and stresses at any point of a two-phase medium consisting of a
homogeneous, isotropic, perfectly elastic half-space in smooth contact with a homogeneous, orthotropic, perfectly
elastic half-space caused by two-dimensional seismic sources located in the isotropic half-space are obtained. The
method consists of first finding the integral expressions for two half-spaces in smooth contact from the corresponding
expressions for an unbounded medium by applying suitable boundary conditions at the interface and then evaluating the
integrals analytically. Here, we discuss the horizontal and vertical displacements for vertical dip-slip fault numerically.
Numerical computations indicate that the deformation field due to a source in an isotropic half-space in smooth contact
with an anisotropic half-space may differ substantially from the deformation field when both the half-spaces are
isotropic.
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1. Introduction

The computation of the deformation and of the stresses generated by a dislocation source in an elastic infinite domain is
a classical problem that has received greater attention and that has found complete analytical solution only in a few
known cases. Steketee (1958a, b) [1], [2] applied the elasticity theory of dislocations. Steketee dealt with a semi-
infinite, non-gravitating, isotropic and homogenous medium. Homogeneity means that the medium is uniform
throughout, whereas isotropy specifies that the elastic properties of the medium are independent of direction. Maruyama
(1966) [3] calculated all sets of Green’s function for obtaining displacements and stresses around faults in a half space.
Freund and Barnett (1976) [4] obtained two dimensional surface deformation due to dip-slip faulting in a uniform half-
space, using the theory of analytic functions of a complex variable. Singh and Garg (1986) [5] obtained the integral
expressions for the Airy stress function in an unbounded medium due to various two-dimensional seismic sources.
Singh ET. al (1991) [6] followed a similar procedure to obtain closed form analytical expression for the displacements
and stresses at any point of either of two homogenous, isotropic, perfectly elastic half spaces in welded contact due to
two-dimensional sources.

Using the concept of orthotropic media, Singh (1986) [7], Garg and Singh (1987) [8], Pan (1989a) [9] studied the static
deformation of a transversely isotropic multilayered half-space by surface loads. The problem of the static deformation
of a transversely isotropic multilayered half-space by buried sources has been discussed by Pan (1989b) [10]. Static
deformation of an orthotropic multilayered elastic half-space by two-dimensional surface loads has been investigated by
Garg et al. (1991) [11]. Singh et al (1991) [12] obtained closed form analytical expression for displacements and stress
at any point of a two phase medium consisting of a homogenous, isotropic, perfectly elastic half-space in welded
contact with a homogeneous, orthotropic, perfectly elastic half-space caused by two-dimensional seismic sources
located in the isotropic half-space. Rani et al (2009) [13] obtained the closed-form expressions for the elastic residual
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field caused by a long dip-slip fault of finite width located in an isotropic half-space any point isotropic half-space in
welded contact with orthotropic half-space. Recently, Singh et al. (2013) [14] obtained closed-form analytical
expressions for displacement and stress field at any points of the two homogeneous, isotropic, perfectly elastic half-
spaces in smooth contact caused by various two-dimensional sources embedded in one of the half-spaces. Up to now,
there is very little literature for isotropic and orthotropic half-spaces in smooth contact.

Therefore, In the present paper, assuming the smooth contact for isotropic and orthotropic half-spaces, and following
Singh et al. (1991) [12], we study the static deformation of two phase medium consisting of a homogenous, isotropic,
perfectly elastic half-space in smooth contact with a homogeneous, orthotropic, perfectly elastic half-space caused by
two-dimensional seismic sources located in the isotropic half-space. Two orthotropic materials namely Topaz and
Barytes have been considered for numerical computations in case of vertical dip-slip fault. Numerical results show that
the effect of anisotropy on the displacement field is more pronounced when the observer is in the orthotropic half-space.

2. Theory

Let the Cartesian co-ordinates be denoted by (x,y,z) with z-axis vertically upwards. Consider two homogeneous,
perfectly elastic half-spaces which are in smooth contact along the plane z = 0. The upper half-space (z > 0) is
assumed to be isotropic with stress-strain relation

O- . .
pij =21 [eij + mdijekk] , (L,j=1.23) €y
Where, p;; are the components of stress tensor, e;; are the components of strain tensor, u is the shear modulus and o is

Poisson’s ratio.
The lower half-space (z < 0) is assumed to be orthotropic with stress-strain relation.
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We consider a two dimensional approximation in which displacement component uq,up,u3 are independent of x so
that d/0x = 0. Under this assumption the plane strain problem (u1 =0) and anti-strain problem (u> =0 and uz=0) are

decoupled and therefore, can be solved separately. The plane strain problem for an isotropic medium can be solved in
terms of Airy stress function U such that

0%U 0%u 0%u
P22 =5 7 P33=a—)]2' P23=—m 3
v2v2y -0 (4)

The plane strain problem for an orthotropic medium can be solved in terms of the Airy
stress function U* such that (Garg et al (1991))

, 92U* , a%U* , 92U*
D22 = 822’ P33 = a_yz' P23 = _ayaz 5)
92  9° 92  9°
2 _ 2 _ *
(@ 552+ 322) (97 e+ 352 v =0 ®)
C33C33 — €23 — 2Cy3C c
24 b = (€22€33 — €33 23C44) ’ 2h? = 22 %
C33Ca4 C33
For an isotropic medium,
2u(1l - o)
C11 = €2 = C33 = 1_20
2uc
C12 = C13 = (23 ~1-20
C4qa = C55 = Cep = U (8)

This yields a? =b? = 1 and equation (6) reduces to equation (4)
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Let there be a line source parallel to the x-axis passing through the point (0,0,h) of the upper half-space z >0 . As shown
by Singh and Garg (1986) [5], the Airy stress function U, for a line source parallel to the x-axis passing through the
point (0,0,h) in an unbounded, isotropic medium can be expressed in the form.

Uy = f [(Lo + Myk|z — h]) sinky + (Py + Qok|z — h|) cos ky|k~te *z~hldk, 9
0

Where, the source coefficients L,, M,, Py, Q, are independent of k. Singh and Garg (1986) [5] obtained these source
coefficients for various seismic sources. These are listed in Appendix II for ready reference. We use the notations of
Ben-Menahem and Singh (1981) [15] for labelling various sources.

For a line source parallel to the x-axis acting at the point (0,0,h) of medium I (z > 0) which is in smooth contact with
medium II (z < 0), the Airy stress function in medium 1 is a solution of Eq.(4) and may be taken to the form

U= U, + f [(Ly + M kz) sinky + (P, + Q,kz) cos kylk~te *?dk, (10)
0
The Airy stress function in medium 1II is a solution of Eq.(6) and is of the form (assuming a # b)

U= f [(Lye™? + M,eP*?) sin ky + (P,e®Z + Q,e?*?) cos kylk~tdk, (11)
0

The constants L,, M;, L,, M, etc. are to be determined from the boundary conditions.
Since the half-spaces are assumed to be in smooth contact along the plane z = 0, the boundary conditions are

P33 = P33, Uz = us,

P23 =0, P23 =0 (12)
at z = 0. The displacements for the isotropic medium in terms of Airy stress function U are given by Rani et al., (1991)
[16].

au 1
2pu, = _E"‘%-I(Pzz + p33)dy, (13a)
au 1
2puz = “ 9z + ZI(PZZ + p33)dz, (13b)
h - 14
where , 0(—2(1_0) (14)
The displacements for the orthotropic medium are given by Garg et al., (1991) [11]
1
up = Zf(csspéz — C23P33)dY, (15a)
! 1 ! !
Uz = Zf(czzpss — €23D32)d2, (15b)
Where, A= C22C33 - C223 (16)

From Egs. (3), (9), (10), (13a) and (13b), we will obtain the following expressions for stresses and displacements for an
isotropic half-space

P,y = f [(Lo — 2Mq + Moklz — h[)e7=Rl 4 (L, — 2M, + M, kz)e™*] sin ky kdk
0
+ f [(Po — 2Qq + Qoklz — h|)e™ =M + (P, — 2Q, + Q1kz)e™"?] cos ky kdk 17)
0
Pys = f [+(Lo — My + Myk|z — h|)e ™ 21 4+ (L, — My + Mykz)e™"?] cos ky kdk
0

+ foo[$(Po — Qo + Qoklz — h)e ¥lz=hl — (P, — Q, + Qlkz)e_kz] sinky kdk (18)
0

N f [(Lo + Moklz — RDe ™ =11 + (L, + Mykz)e™*] sin ky kdk
0

- f [(Py + Qoklz — h)e™ 2= + (P, + Q,kz)e ™| cos ky kdk (19)
0
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” M, M,
2uu, = f [(—LO = Myk|z — hl) e k2=l — (L, — — Mlkz)e"‘z] cos ky kdk
0
+ f [(Po - % + Qok|z — hl) e Mz=hl 4 (p, — % + Qlkz)e_kz] sin ky kdk (20)
0

— " M, —kl|z—h| M, —kz |
2uus = + LO—M0+7+M0k|2—h| e + (L, — M, +7+M1kz)e sinky kdk
0
+f [i (Po — Qo+ % + Qoklz — h|) e Kle=hl 4 (P, — Q1 + % + Qlkz)e_kz] cosky kdk (21
0

In Egs. (18) And (21), the upper sign is for z > h and the lower sign is for 0 <z < h.

Similarly, from Egs. (5), (11), (15a), and (15b), we will obtain the following expressions for stresses and displacements
for an orthotropic half-space

Dyy = f [(a?L,e%? + b2M,eP*?) sin ky + (a?P,e** + b?Q,eP*?) cos kylk dk (22)
0
Dz = f [—(aL,e®*? + bM,e?*?) cos ky + (aP,e™? + bQ,e"*?) sin kylk dk (23)
0
D3z = —f [(L,e? + M,eP*?) sinky + (P,e™Z + Q,e’*?) cos kylk dk (24)
0
u, = J. [— (1, L,e%% + 1, M,eP*?) cos ky + (1, P,e*** + 1,Q,e"*?) sin ky] dk (25)
0
Uy = —J. [(s1L,e™? + s,M,eP**) sinky + (s;P,e%** + 5,Q,e*%) cos ky] dk (26)
0
where,
€33a% + Cy3 C33b% + cy3
n=——— =
2 2
Cy3a° + Cyy Cy3b” + ¢y
S1=— S$;=— i A= (c22€33 — €33), (27)

It is noticed from appendix for source coefficients that the coefficientsL,, M,, P,, Q, might have different values for
z>h and z< h; let L,M~,P~, and Q~ be the values of L,, M,, P,and Q, respectively, valid for z < h. The
boundary conditions (12) give the following system of equations:

(L_ + M_kh)e_kh + L1 = L2 + MZ
(P_ + Q_kh)e_khj' P1 = P2 + Q2

M Kh M,
— (L‘ -M + o + M'kh) e+ L — M + Pl —2u(s L, + s,M5)

—(P_ _Q_ +%+Q_kh>e_kh+P1—Q1+%= _Z‘H(Slpz +SzQz)

(L~ =M~ + M kh)e ™ + 1, — M, =0

—(P—Q +Q kh)e® +P —Q,=0

aLz + bM2 =0

apz + bQ2 =0 (28)

Solving the system for L,, My, Py, Q; L,, M, P,, Q,, we get

Ly = A (L™ + M~ kh)e™*"

M; =[M~ = 24,(L™ + M~ kh)]e™*"

L, = =2B,(L™ + M~ kh)e™*

M, = 2B, (L™ + M~ kh)e™*"

P, = A (P~ + Q kh)e*h

Q1 = [Q™ = 24,(P™ + Q" kh)]e™*"

P, = =2B,(P™ + Q" kh)e™t

Q, = 2B, (P~ + Q" kh)e k" (29)

where,
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(a—b) —2ua(as, — bsy)

A, =
1 G ]
A = 2ua(as, — bs;)
2 — G )
B ? B, = b
1T PTG
G = (a —b) + 2ua(as, — bs;) (30)

Putting the values of the constants L,, M;, P;, etc. in Egs. (10) And (11), we get the integral expressions for the Airy
stress function in the two media. These integrals can be evaluated analytically using the standard integrals given in
appendix. The displacements and stresses can be obtained similarly. Using the notation (z # h, az # h, bz + h)

R?=9y%2 4+ (z—h)?, T?=7v?+ (h-az)?
S2=v2+(z+h)?, H?=7vy%+ (h—bz)? (31)

Finally we get, for the isotropic half-space,

_ (Y ) ylz—hl (z-h? A YN L,V
U = Ly tan (V—M My ™— %mR+QW—ET—+L|ﬁﬁm (;:ﬁ 24,
_1(Ath+2)y  4A,hyz(z+ h) B (z+h)z
+M = 3 +P [—AﬂnS—QAZ—fET—J
[Ah+ 2)(z+ h) + 24,hz 4A,hz(z + h)?
+0 [ 52 - 54 (32)
yl—hl yb—hl 4&—h) 2(z — h)?
D22 —ZLO R+ P0R2 1+T
5(z — h)? 4(z — h)* y 84,z(z + h)?
+2%E7P— ot +2LEZAﬂz+m+2Aﬂﬁ+2m——¥L?r——
y 4(z + (A, + 44,)h + 2} hz(z + h)
—2M——k@%+Agh+@z+yo— ;2 2 — 244, — 5 —
hz(z + h)3
+ 484, —
1 2(z + h){6A4,z + (A, + 44,)(z + h)} z(z+ h)3
—Pg%yh+m— 5 + 164, ———
1 (z + W){3(A, + 44,)h + (5z + 2h)} hz
+2Q0" |1 5 — 6423
4(z + h)3{(A; + 44,)h + z} + 484,hz(z + h)? hz(z + h)*
N (z + h)*{(4, 2)54 z} 2hz(z +h) _ 484, z(z + h) ] 33)
1 2(Z—h) 8(z—h)? 8(z—-h*_ ylz — h| ylz—hl Z(Z—h)
Doz = +LOEEP—— ] 0R21—— et | F 2P £ 4Q
1 2(z + {64,z + (A + 24,)(z + h)} z(z+h)
—LEEFA,+Af— 2 yl 2 + 164, —;
1 2(z+ m){3(A4, + 24,)h + (4z + h)} hz
+M E[l— 5 —124;
8(z + h)3{(A; + 44,)h + z} + 964, hz(z + h)? hz(z + h)*
+ g ~ 964y~
_y 84,z(z + h)?
—2PEZsz+m+2@@z+m——¥L§¢——
4(z+h)*{(A, + 24,)h + z hz(z+h
+207 5 kZAzﬁ—Al)h-k(Zz4—h) @+ M« ;2 2) }—-24A2——£§5——2
hz(z + h)3
+ 484, — (34)
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p33 = _ZLoT + ZM

ylz = hl ylz—hl 4(z—h)
R

2(z — h)? (z — h)? 4(z — h)?
PORZ[ —R2 ]+2Q0 4 3_ 2
8A2Z(Z + h)?
52
_y Az h)2(A.h + 2) hz(z + h) hz(z + h)3
+2M 54[,4 h+z = — 24y + 48—

-y
- 2L §|:A1(Z+h) + 2A22_

1 2(z+ h){64,z + A (z + h)} z(z + h)3
+P E[Al— = +164,—— 2
1 3(Z + h)(Ah + 2) hz 4(z+ h)3(A;h + z) + 484,hz(z + h)?
52 25z §4
hz(z + h)*
56

+207 &

+ 484, (35)

—h —h 2 —h
PN il Y |[ (z )]

2(z — h)?
Rz e

+ Poﬁ + QO R2 [ RZ
4A,z(z + h)?
S
2 24,
~ y 24, 1. 2@+m)*{(Ar+—Dh+ 2} hz(z + h)
+ M (A1+—+ )h+Z(1+ )— 52 —121‘12572

- L_ﬁ[(Al +T)(Z + h) + 2A2Z -

2A z(z+h
+ 164, =2 (7)]

hz(z + h)3 Y
54 P 52 Al a - 4A2

2A
1 2(z+h){A4;, + Z)h + z} hz hz(z + h)?
+ 52 4’A2_ - 16A2T

52 (36)

R? R? 0 R2 R?
24 4A,72(z + h
+L-—[A1—72+2A2—%

2A
_y 1 2((z+m{4, - Z)h + z} h(2z + h) hz(z + h)?
+M™Z|-1+—+ +4A2T—16A2T

S2 a 52
z(z + h)z]
2

1 2(z—h)? z—h z—h|[1 2(z — h)?
y yL‘+a+( >]+%| o] lk_2+i__li

1 24,

202 + W)2{(A; + 24, — ZAZ)h +2)
5‘2

11 24,
+Q ﬁ (E—l)(Z-Fh)—Z—(Al—7+2A2>h+

hz(z + h) 164 hz(z + h)?

+12A2 52 - 2 54 (37)
For the orthotropic medium,
R e e o [ (7 )
U =207 =By tan™t (=) + By tan™! (= )| + 2M7 |hy (5 + 1
Byh h az) Bjh(h—bz
—2P [-B,InT + By InH] + 20~ [ 2 ( ) B )] (38)
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Bzazh Blbzh 4Bza2h(h - aZ)Z 4Blb2h(h - bZ)Z

T+  H* T6 + HS

B,a? B;b?> 2B,a’(h—az)*? 2B;b*(h—bz)?
+2P_[2_1_2( Z)+1( )
T2 H? T* H*
_[6B,ha*(h—az) 6B,hb*(h—bz) 8B,a’h(h — az)?

+2Q T+ B H* B T6
, 8B1b%h(h bz)3]

+4M~y

—Bya?(h—az) B,b?(h— bz)
T+ AT

P2z = 4L‘y[

e (39)
Bza Blb ZBzah(h - aZ)Z ZBlbh(h - bZ)Z
TE T T* B H*

6B,ah(h —az) 6B,bh(h —bz) 8Byah(h—az)® 8B,bh(h — bz)?
B T4 + H* + T6 B HS
—B,a(h—az) B;b(h—bz)

T# + H*

B,ah B;bh 4B,ah(h —az)? 4B;bh(h — bz)?

T+  H* Té + HS

Pé3 =2L" [_

+2M~

+ 4P‘y[

+ 4Q‘y[ (40)

, B,(h—az) B;(h—bz B,h B;h 4B,h(h —az)?> 4B,h(h — bz)?
p33=4L‘y[2( )_ 1(4 )]—4M_[2 1n 2h( )+ 1(6 )]

% H YT+~ Hr T® H
B B 2B,(h — 2 2B,(h —bz)?
_2p- bz b1 2 ( az) n 1 ( z)
T2 H? T4 H*
_[6Byh(h —az) 6B h(h—bz) 8B,h(h—az)® 8B h(h—bz)3
- 20 T4 B H* B T6 + He

(41)

”2:2L_[ T2 HZ T2 HZ T H*

B,r;, Byr 2B,r h(h — az 2B;r,h(h — bz
_2P_y[21 12]_2Q_y[ 211h( )_ 11m2h( )]

Bzrl(h - aZ) Blrz(h - bZ)] ZM_ Bzrlh Blrzh ZBzrlh(h - aZ)Z + zBlrzh(h - bZ)Z]

T2 K2 T4 H* (42)

, B,s B;s 2B,s:h(h — az 2B;s,h(h — bz B,s{(h —az B.s,(h — bz
u3=2L_y[ 251 12]+2M_y[ 251h( )_ 152 (4 )]+2P_[21( )_ 12(2 )]

T2  H2? T4 H T2 H
B,s;h  Bys,h 2B,s;h(h —az)? 2B;s,h(h — bz)?
T2  H2 T4 + H*

—-2Q° [ (43)

3. Particular cases

3.1. Dip- slips dislocation

The Airy stress function due to a line dip-slip fault of arbitrary dip can be expressed in terms of the fields due to a
vertical dip-slip and a dip-slip at a 45° dipping fault as given below:

U _
U= “b,ds[ (23)+(32) (33)-(22)

cos 26 + v D7 sin 26], (44)
23 23

Where b’ is the slip, § is dip angle, ds is the width of the dislocation plane and D,;=D;.;= ubds are the moments of
double couple (23) + (32) and (33)—(22) respectively. Uz3)+(32) And U(s3y_(22) are obtained from equations (35) or
(41) on inserting the values of the source coefficients L,, M,, P,, and Q, from Table I corresponding to the sources
(23) + (32) and (33)—(22) respectively. These yields,

aub'ds vlz—h| (A1h+2)y 4A,hyz(z+ h)
j— +
U= [cos 26{ 5 52 + 5t

(45)

z—h)? (Ah+2)(z+h) +24,hz  44,hz(z + h)?
+sin26{( )+(1 )( ) 2hz 44, ( )}]

R? S? S4
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. 2aub'ds B, B, . B,h(h —az) Byh(h—bz)
U = — [cos 26 {hy (ﬁ — m)} —sin 26 T2 — B (46)

Similar expressions can be obtained for stresses and displacements.

3.2. Tensile dislocation

The Airy stress function for a long line tensile source of arbitrary dip can be expressed as a linear combination of

i) b'dsU,,, the Airy stress function for a vertical tensile fault (6§ = 90°) with dislocation in the x,-direction;

ii)  b'dsUs3, the Airy stress function for a horizontal tensile fault (6 = 0°) with dislocation in the x;-direction;

iii)  b'dsU,3, the Airy stress function for a vertical dip-slip fault, as given below:

U = ub'ds[U,,sin*8 — Uyzsin28 + Uszcos?68 ] 47)
Using the values of the source coefficients Ly, My, Py, Qo ,L™,M~,P~, and Q~ given in Table I. Equations (33) and
(38) yield the Airy stress function due to a long tensile line source of arbitrary dip parallel to x;-axis and acting at the

point (0,0,h) located in the isotropic half-space welded with the orthotropic half-space in the form ,
For the isotropic half-space,

aub'ds 24,z(z + h) (z=h)* (Ath+2)(z+h) +24,hz  4A,hz(z + h)?
U= [—lnR—AllnS—zT+cosz5 R? +— 52 A —— 54
. v(z—h) (A ih+2)y 4A,hyz(z+h)
— sin 25{ T ! 5z +—2 5t (48)
And for the orthotropic half space,
. 2aub'ds B,h(h —az) B;h(h—bz) ) B, B;
Uur= T[BZ InT — B;InH — cos 26{ 2 - B —sin 26{hy (ﬁ_ﬁ)} (49)

Similar results can be obtained for stresses and displacements.

4. Numerical results and discussions

Numerically we will consider the case of vertical dip slip line source. We compare the displacement field due to a long
vertical dip-slip line source located at (0, 0, h) in the isotropic half-space welded with orthotropic half-space with the
corresponding displacement field when both the half-spaces are isotropic. We assume the isotropic half-space to be
poissonian so that ¢ = 0.25. For the orthotropic half-space, we use the values of elastic constants given by Love (1944).
For Topaz,

¢11 = 2870, ¢y, = 3560, ¢35 = 3000,

¢z = 1280, c;3 =900, ¢35 = 860,

C4a = 1100, cs5 = 1350, ¢4 = 1330,

in terms of a unit of 106grammes wt/cm?, this yields a = 1.2992 and b = 0.8385.

For Barytes,

c11 =907, ¢, =800, c33 = 1074,

C1p = 468, cys = 273, cy5 = 275,

Can = 122, cos = 293, cgq = 283,

in terms of a unit of 106grammes wt/cm?, this yields a = 2.3118 and b= 0.3735.

When the lower half-space is also isotropic,

2u'(1—0")

€11 = C2 = (33 = 1-20"
2u'c’
C12 = C13 = (23 T 120

!

C4q4 = Cs55 = Cg6 = U

We take ¢’ = 0.25 and c,,/u =0.5 for numerical computations.
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Fig. 1: Variation of Horizontal Displacement (u3/b’ds) with Distance from the Fault (y/h) Due to Vertical Dip-Slip Faultat (a) z=-h, (b) z=0, (C)

z=h.

Figures la-c are showing the variation of horizontal displacement (u3/b’ds) with distance from the fault y/h due to
vertical dip-slip line source. The displacement is symmetric about the line y = 0. In fig. 1(a) the observer is in the
orthotropic half-space at z = - h. The horizontal displacement for Barytes varies most significantly in magnitude rather
than Topaz from the corresponding one for the isotropic case. In fig 1(b), the observer is at the interface, displacement
varies as in fig.1 (a) but with negative magnitude approximately. In fig.1(c), observer is in isotropic half-space at z = h,
horizontal displacement attains maximum value at origin and tends to zero as y approaches to infinity for all cases. It is
observed that effect of anisotropy on the displacement field is more pronounced when the observer is in the orthotropic

half-space.
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Fig. 2: Variation of Horizontal Displacement (u/b’ds) with Depth from the Fault z/h Due to Vertical Dip-Slip Fault at (a) y = h, (b) y = - h/2, (c)

y =h/2.

Figures 2a-c display horizontal displacement (u,/b’ds) with depth from the fault z/h. The displacement is anti-
symmetric about the line z = 0. In fig. 2(a), (c) the observer is in the isotropic half-space at y = h, h/2 respectively. In fig
2(b), the observer is in the orthotropic half-space at y = - h. In each, pattern is same and tends to zero as z approaches to

infinity.
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Fig. 3: Variation of Horizontal Displacement (u5/b’ds) with Depth from the Fault Z/H Due to Vertical Dip Slip Fault at (a) y = h for Different
Values of Ratio of Rigidities C"T‘* =0.1, 0.5, 2 and 10. Taking the Orthotropic Material as (a) Topaz, (b) Barytes, (c) Isotropic.

Figures 3a-c exhibit the variation of the horizontal displacement with depth z/h for four values of rigidities
C;—“ = 0.1,0.5,2 and 10 for Topaz and Barytes and isotropic respectively due to dip-slip fault. It is observed that with

increase in the value of ratio of rigidities, there is increase in horizontal displacement for Topaz and Barytes. Also, for
the same value of ratio of rigidities horizontal displacement for Barytes is more than Topaz and isotropic in magnitude.
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Fig. 4: Variation of vertical displacement (u}/b’ds) with distance from the fault y/h due to vertical dip-slip fault at (a) z= 0 (b) z = 2h, (c) z = -2h.

Figures 4a-c shows vertical displacement (u3/b’ds) with distance from the fault y/h due to vertical dip-slip line source.
The displacement is symmetric about the line y = 0. In fig. 4(c) the observer is in the orthotropic half-space at z = -2h.
The vertical displacement for Barytes varies most significantly in magnitude rather than Topaz from the corresponding
one for the isotropic case. In fig 4(a), the observer is at the interface and In fig.4(b), observer is in isotropic half-space at
z =2h, vertical displacement attains maximum value at origin and tends to zero as y approaches to infinity for all cases.
It is observed that effect of anisotropy on the displacement field is more pronounced when the observer is in the

orthotropic half-space.
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Fig. 5: Variation of Vertical Displacement (u}/b’ds) with Depth from the Fault Z/H Due to Vertical Dip-Slip Fault at (a) y = - h/2, (b) y = h, (c)
y=-h.

Figures 5a-c display the vert

ical displacement (u3/b’ds) with depth from the fault z/h. The displacement is anti-

symmetric about the line y = 0. In fig. 5(a), (c) the observer is in the orthotropic half-space aty = - h/2, -h respectively.
In fig 5(b), the observer is in the isotropic half-space at y = h. In each, pattern is same and displacement tends to zero as

y approaches to infinity.
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Fig. 6: Variation of Vertical Displacement (uj/b'ds) with Depth from the Fault z/h Due to Vertical Dip-Slip Fault at y = h for Different VValues of

Caa

Ratio of Rigidities n

=0.1, 0.5, 2 and 10. Taking the Orthotropic Material as (a) Topaz, (b) Barytes, (c) Isotropic.

Figures 6a-c exhibit the variation of the vertical displacement with depth z/h for four values of rigidities

Caq

= 0.1,0.5,2 and 10 for Topaz and Barytes and isotropic respectively due to dip-slip fault. It is observed that with

u
increase in the value of ratio of rigidities, there is increase in vertical displacement for Topaz and Barytes. Also, for the
same value of ratio of rigidities vertical displacement for Barytes is more than Topaz and isotropic in magnitude.

Acknowledgement

I, Yogita Godara (JRF), am grateful to the council of scientific and Industrial Research, New Delhi for financial
support. The authors are thankful to the referees for their comments which led to an improvement in the presentation of

the paper



[1]

[2]
(3]

(4]

[5]
(6]

7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

Global Journal of Mathematical Analysis 183

References

Steketee, J.A., "On Volterra's Dislocations in A Semi-infinite Elastic Medium", Can. J. Phys., Vol. 36,1958a, 192-205
http://dx.doi.org/10.1139/p58-024.

Stekettee, J.A," Some Geophysical Applications of the Elasticity Theory of Dislocations”, Can. J. Phys., vol. 36,1958b, 1168. 1198.
Maruyama, T.," On two-dimensional elastic dislocations in an infinite and semi-infinite medium", Bull. Earthg. Res. Inst., Univ. Tokyo, 44,
811-871, 1966.

Freund, L. B. and D. M. Barnett," A two-dimensional analysis of surface deformation due to dip-slip Faulting”, Bull. Seismol. Soc. Am., 66,
667-675, 1976.

Singh, S. J. and N. R. Garg," On the representation of two-dimensional seismic sources", Acta Geophys. Pol., 34, 1-12, 1986.

Singh, S. J., S. Rani, and N. R. Garg," Displacements and stresses in two welded half-spaces due to two- dimensional sources", Phys. Earth.
Planet. Inter 1991.

Singh, S. J.," Static deformation of a transversely isotropic multilayered half-space by surface loads", Phys. Earth Planet. Inter 42, 263-273,
1986. http://dx.doi.org/10.1016/0031-9201 (86)90029-4.

Garg, N. R. and S. J. Singh," 2-D response of a transversely isotropic multilayered half-space due to surface Loads", Indian J. Pure Appl.
Maths., 18, 763-777, 1987.

Pan, E.," Static response of a transversely isotropic and layered half-space to general surface loads", Phys. Earth Planet. Inter., 54, 353-363,
1989a. http://dx.doi.org/10.1016/0031-9201 (89)90252-5.

Pan, E.," Static response of a transversely isotropic and layered half-space due to general dislocation sources”, Phys. Earth Planet, Inter., 58,
103-117, 1989b. http://dx.doi.org/10.1016/0031-9201 (89)90046-0.

Garg, N. R., S. J. Singh, and S. Manchanda," Static deformation of an orthotropic multilayered elastic half-space by two dimensional surface
loads", Proc. Ind. Acad. Sci. (Earth Planet. Sci.), 100, 205-218, 1991.

Singh S. J., Rani S.," Static deformation due to two-dimensional seismic sources embedded in an isotropic half-space in welded contact with
an orthotropic half-space”, J. Phys. Earth,39, 599-618, 1991. http://dx.doi.org/10.4294/jpe1952.39.599.

Rani, S. et al.,"Static deformation due to dip-slip fault of finite width embedded in an isotropic half-space in welded contact with an orthotopic
half space", Sadhana Vol. 34, Part 6, pp. 887-902. Indian Academy of Sciences, 2009.

Singh M. et al.," Static deformation of two half-spaces in smooth contact due to vertical tensile Fault", Inter. J. Inn. Tec. Creat. Engg. 3, 17-30,
2013.

Ben-Menahem, A. and S. J. Singh," Seismic Waves and Sources", Springer-Verlag, New York, 1108 pp., 1981. http://dx.doi.org/10.1007/978-
1-4612-5856-8.

Rani, S., S. J. Singh, and N. R. Garg," Displacements and stresses at any point of a uniform half-space due to two-dimensional buried
sources", Phys. Earth Planet. Inter. 65, 276-286, 1991. http://dx.doi.org/10.1016/0031-9201 (91)90134-4.

Appendix |

[2>0, y*+z’=R’]

© k 1 2 2

1.)] gk S0 ydk—ta (g) 6)f e cosky k di = ( z —1)

k
2)f k2SS R 7.)f e‘kzsinkykzdk— ( 1)
0

3-)[ e ¥ sinky dk = % 8.) f e 7 cosky k? dk =—< 3)
0 0
o S 24

4.)f e"‘%oskydkz% 9.)f e " sinkyk3dk = yz( 1)
0

5.)J.me"‘z sinkykdk = z 10. )f k2 cos kyk3dk =— 8_ iz_l_ 1
0 R* R* R?

Appendix I

Source coefficients for various sources. The upper sign is for z > h and the lower sign for z <h.

Source Ly M, Py Qo
Single couple (23) * Fas + aE 0 0
2 - 2m
Single couple (32) & + aE 0 0
T 2m - a27r
Double couple (23)+(32) 0 + ;D23 0 0
F23=F3=Dg3 a
Centre of rotation (32)-(23) + ;RB 0 0 0
F23=F3=Rzs
. F,, a
Dlpole (22) 0 0 (1 — 0{) E - EFZZ
. F33 a
Dipole (33) 0 0 a- a)zc—n EF“
Centre of dilatation (22)+(33) 0 0 1-a ;0 0
F23=F3=Co
a
Dipole (22) 0 0 0 ;D'23

Fas= FSZ:D’zg



