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Abstract

In the paper, the authors verify the complete monotonicity of the difference e1/t − ψ′(t) on (0,∞), compute the
completely monotonic degree and establish integral representations of the remainder of the Laurent series expansion
of e1/z, and derive an inequality which gives a lower bound for the first order modified Bessel function of the first
kind. These results show us some new properties and relations of the exponential, trigamma, the first kind modified
Bessel functions and the hypergeometric series.
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1. Introduction

In [3, Lemma 2], the inequality

ψ′(t) < e1/t − 1 (1.1)

on (0,∞) was obtained and applied, where ψ(t) stands for the digamma function which may be defined by the
logarithmic derivative

ψ(t) = [ln Γ(t)]′ =
Γ′(t)
Γ(t)
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and Γ(t) is the classical Euler gamma function which may be defined for <z > 0 by

Γ(z) =
∫ ∞

0

tz−1e−t d t.

The derivatives ψ′(z) and ψ′′(z) of ψ(z) are respectively called the tri- and tetra-gamma functions. As a whole, the
derivatives ψ(k)(z) for k ∈ {0} ∪ N are called the polygamma functions.

The first aim of this paper is to generalize the inequality (1.1) to complete monotonicity of a difference between
both sides of (1.1).

Our first result can be formulated as Theorem 1.1 below.

Theorem 1.1. The function

h(t) = e1/t − ψ′(t) (1.2)

is completely monotonic, that is, (−1)k−1h(k−1)(t) ≥ 0 for k ∈ N, on (0,∞) and

lim
t→∞

h(t) = 1. (1.3)

The notion “completely monotonic degree” was innovated in [2, Definition 1] which may be regarded as a slight
but essential modification of [5, Definition 1.5]. This may be further fixed as follows.

Definition 1.1. Let f(x) be a completely monotonic function on (0,∞) and denote f(∞) = limx→∞ f(x). If for
some r ∈ R the function xr[f(x)− f(∞)] is completely monotonic on (0,∞) but xr+ε[f(x)− f(∞)] is not for any
positive number ε > 0, then we say that the number r is the completely monotonic degree of f(x) with respect to
x ∈ (0,∞); if for all r ∈ R each and every xr[f(x)− f(∞)] is completely monotonic on (0,∞), then we say that the
completely monotonic degree of f(x) with respect to x ∈ (0,∞) is ∞.

For convenience, the notation degx
cm[f(x)] was designed in [2, p. 9890] to denote the completely monotonic

degree r of f(x) with respect to x ∈ (0,∞).
It is clear that the completely monotonic degree degx

cm[f(x)] of any completely monotonic function f(x) on
(0,∞) is at leat 0. It may be proved that the completely monotonic degree degx

cm[f(x)] equals ∞ if and only if
f(x) is nonnegative and identically constant.

The second aim of this paper is to compute the completely monotonic degree and to establish integral represen-
tations of the remainder of the Laurent series expansion of the exponential function e1/z.

Our second result may be stated as the following theorem.

Theorem 1.2. For k ∈ {0} ∪ N and z 6= 0, let

Hk(z) = e1/z −
k∑

m=0

1
m!

1
zm

. (1.4)

1. The completely monotonic degree of Hk(t) on (0,∞) meets

degt
cm[Hk(t)] = k + 1. (1.5)

2. For <z > 0, the function Hk(z) has the integral representations

Hk(z) =
1

k!(k + 1)!

∫ ∞

0
1F2(1; k + 1, k + 2; t)tke−zt d t (1.6)

and

Hk(z) =
1

zk+1

[
1

(k + 1)!
+

∫ ∞

0

Ik+2

(
2
√

t
)

t(k+2)/2
e−zt d t

]
, (1.7)

where the hypergeometric series

pFq(a1, . . . , ap; b1, . . . , bq;x) =
∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bq)n

xn

n!
(1.8)
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for bi /∈ {0,−1,−2, . . . }, the shifted factorial (a)0 = 1 and

(a)n = a(a + 1) · · · (a + n− 1) (1.9)

for n > 0 and any real or complex number a, and the modified Bessel function of the first kind

Iν(z) =
∞∑

k=0

1
k!Γ(ν + k + 1)

(
z

2

)2k+ν

(1.10)

for ν ∈ R and z ∈ C.

As an application of Theorems 1.1 and 1.2, the following inequality for the first order modified Bessel function
of the first kind I1 may be derived.

Theorem 1.3. For t > 0, we have

I1(t) >
(t/2)3

1− e−(t/2)2
. (1.11)

2. Proofs of Theorem 1.1

We supply two proofs of Theorem 1.1.

First proof. From the well known formula

ψ(n)(z) = (−1)n+1

∫ ∞

0

un

1− e−u
e−zu du (2.1)

for <z > 0 and n ∈ N, see [1, p. 260, 6.4.1], it is ready that limt→∞ ψ(n)(t) = 0 for n ∈ N. So, the limit (1.3) may
be deduced immediately and, by

(
e1/t

)(i) = (−1)ie1/t 1
t2i

i−1∑

k=0

ai,ktk (2.2)

for i ∈ N and t 6= 0, where ai,k =
(

i
k

)(
i−1
k

)
k! for 0 ≤ k ≤ i− 1, in [13, Theorem 2.1],

h(i)(t) =
(
e1/t

)(i) − ψ(i+1)(t) = (−1)ie1/t
i−1∑

k=0

ai,k

t2i−k
− ψ(i+1)(t) → 0 (2.3)

for i ∈ N as t →∞.
Utilizing the recurrence formula

ψ(n)(z + 1) = ψ(n)(z) + (−1)n n!
zn+1

(2.4)

in [1, p. 260, 6.4.7] and calculating reveal

h(t + 1)− h(t) = e1/(t+1) − e1/t + ψ′(t)− ψ′(t + 1)

= e1/(t+1) − e1/t +
1
t2

=
1
t2

+
∞∑

k=0

1
(k + 1)!

[
1

(t + 1)k+1
− 1

tk+1

]
,

[h(t + 1)− h(t)](i) = (−1)i (i + 1)!
ti+2

+
∞∑

k=0

(−1)i(i + k)!
(k + 1)!k!

[
1

(t + 1)i+k+1
− 1

ti+k+1

]
,

and

(−1)i[h(t + 1)− h(t)](i) =
(i + 1)!

ti+2
+

∞∑

k=0

(i + k)!
(k + 1)!k!

[
1

(t + 1)i+k+1
− 1

ti+k+1

]
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<
(i + 1)!

ti+2
+

2∑

k=0

(i + k)!
(k + 1)!k!

[
1

(t + 1)i+k+1
− 1

ti+k+1

]

=
i!

12ti+3(t + 1)i+3
fi(t),

where

fi(t) = 6(i + 1)t(t + 1)
[
(t + 1)i+2 + ti+2

]− 12t2(t + 1)2
[
(t + 1)i+1 − ti+1

]− (i + 1)(i + 2)
[
(t + 1)i+3 − ti+3

]

= 6(i + 1)t(t + 1)

[
i+2∑

`=0

(
i + 2

`

)
t` + ti+2

]
− 12t2(t + 1)2

i∑

`=0

(
i + 1

`

)
t` − (i + 1)(i + 2)

i+2∑

`=0

(
i + 3

`

)
t`

=
(i− 1)(i + 4)(i + 5)

2

[
(2− i)(i + 3)

3
t− i

]
t2 − i(i + 1)(i + 5)t

−
i∑

`=4

[
(i + 1)(i + 2)

(
i + 3

`

)
− 6(i + 1)

(
i + 3
`− 1

)
+ 12

(
i + 3
`− 2

)]
t`

=
(i− 1)(i + 4)(i + 5)

2

[
(2− i)(i + 3)

3
t− i

]
t2 − i(i + 1)(i + 5)t

− (1 + i)(2 + i)− (i + 4)(i + 5)
i∑

`=4

(i− ` + 1)(i− ` + 2)
`(i− ` + 5)

(
i + 3
`− 1

)
t`

and an empty sum is understood to be nil. As a result, the function fi(t) is negative and

(−1)i[h(t + 1)− h(t)](i) = (−1)i[h(t + 1)](i) − (−1)i[h(t)](i) < 0 (2.5)

for all i ≥ 0 and t ∈ (0,∞). Hence, by consecutive recursion and (2.3),

(−1)i[h(t)](i) ≥ (−1)i[h(t + 1)](i) ≥ (−1)i[h(t + 2)](i) ≥ · · · ≥ (−1)i[h(t + k)](i) ≥ (−1)i lim
k→∞

[h(t + k)](i) = 0

for i ∈ N and t ∈ (0,∞). This implies that the function h(t) is decreasing on (0,∞). Combining this monotonicity
with (1.3) gives h(t) > 1 on (0,∞). In conclusion, by definition, the function h(t) is completely monotonic on
(0,∞). The first proof of Theorem 1.1 is complete.

Second proof. To see the complete monotonicity of the function h, one writes

h(t)− h(t + 1) = e1/t − e1/(t+1) − 1
t2

=
3∑

k=1

Ak(t) +
∞∑

k=4

Ak(t)− 1
t2

with

Ak(t) =
1
k!

(t + 1)k − tk

tk(t + 1)k
=

1
k!

k−1∑

j=0

1
(t + 1)ktk−j

.

Now since

3∑

k=1

Ak(t)− 1
t2

=
1

6t3(t + 1)3
,

the difference h(t)−h(t+1) is a sum of completely monotonic functions and hence completely monotonic on (0,∞).
Finally, the function

h(t) = lim
n→∞

n∑

k=0

[h(t + k)− h(t + k + 1)]

is completely monotonic on (0,∞). The second proof of Theorem 1.1 is complete.
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3. Proofs of Theorem 1.2

It is general knowledge that the exponential function e1/z for z ∈ C with z 6= 0 can be expanded into the Laurent
series

e1/z =
∞∑

m=0

1
m!

1
zm

, z 6= 0. (3.1)

Therefore, it is clear that

Hk(z) =
∞∑

m=k+1

1
m!

1
zm

, z 6= 0 (3.2)

and xk+1Hk(x) is completely monotonic on (0,∞). That is,

degt
cm[Hk(t)] ≥ k + 1. (3.3)

Since, for any ε > 0, the function

xk+1+εHk(x) = xε
∞∑

m=0

1
(m + k + 1)!

1
xm

tends to ∞ as x →∞, we see that for any ε > 0 the function xk+1+εHk(x) is not completely monotonic on (0,∞).
That is,

degt
cm[Hk(t)] ≤ k + 1. (3.4)

Combining (3.3) and (3.4) leads to (1.5).
For <z > 0 and <k > 0, it was listed in [1, p. 255, 6.1.1] that

Γ(z) = kz

∫ ∞

0

tz−1e−kt d t.

This formula can be rearranged as

1
zw

=
1

Γ(w)

∫ ∞

0

tw−1e−zt d t (3.5)

for <z > 0 and <w > 0. Substituting the formula (3.5) into (3.2) yields

Hk(z) =
∫ ∞

0

[ ∞∑

m=k+1

1
m!

1
Γ(m)

tm−1

]
e−zt d t =

1
k!(k + 1)!

∫ ∞

0
1F2(1; k + 1, k + 2; t)tke−zt d t.

The integral representation (1.6) follows.
The function Hk(z) can be rewritten as

Hk(z) =
1

zk+1

∞∑
m=0

1
(k + 1 + m)!

1
zm

=
1

zk+1

{
1

(k + 1)!
+

∫ ∞

0

[ ∞∑
m=1

1
(k + 1 + m)!

1
Γ(m)

tm−1

]
e−zt d t

}

=
1

zk+1

[
1

(k + 1)!
+

∫ ∞

0

Ik+2

(
2
√

t
)

t(k+2)/2
e−zt d t

]
.

The integral representation (1.7) follows. Theorem 1.2 is thus proved.
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4. Proof of Theorem 1.3

When k = 0, the integral representations (1.6) and (1.7) become

e1/z = 1 +
∫ ∞

0

I1

(
2
√

t
)

√
t

e−zt d t (4.1)

and

e1/z = 1 +
1
z

[
1 +

∫ ∞

0

I2

(
2
√

t
)

t
e−zt d t

]
(4.2)

for <z > 0. Hence, by (2.1) for n = 1, the function h(z) defined by (1.2) has the following integral representation

h(z) = 1 +
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u

1− e−u

]
e−zu du (4.3)

and

(−1)kh(k)(t) =
∫ ∞

0

[
I1

(
2
√

u
)

√
u

− u

1− e−u

]
uke−tu d u (4.4)

for k ≥ 1 are completely monotonic on (0,∞). The famous Hausdorff-Bernstein-Widder Theorem [11, p. 161,
Theorem 12b] states that a necessary and sufficient condition that f(x) should be completely monotonic for 0 <
x < ∞ is that

f(x) =
∫ ∞

0

e−xt dα(t), (4.5)

where α(t) is non-decreasing and the integral converges for 0 < x < ∞. Consequently, the function in the bracket
of (4.4) is not less than zero, that is,

I1

(
2
√

u
)

√
u

≥ u

1− e−u
(4.6)

in which replacing 2
√

u by t yields the inequality (1.11). The proof of Theorem 1.3 is complete.

5. Remarks

In this final section, we would like to remark something.
Remark 5.1. Alternative proofs of Theorem 1.1 was given in [8, Theorem 3.1] and [10, Theorem 1.1].
Remark 5.2. The result (1.5) in Theorem 1.2 can be generalized as follows. Suppose that

f(t) =
∞∑

m=0

amtm

has infinite radius of convergence and that am ≥ 0 for all m. Then

Hk(t) = f

(
1
t

)
−

k∑
m=0

am

tm
=

∞∑

m=k+1

am

tm

is completely monotonic as well as

tk+1Hk(t) =
∞∑

m=k+1

am

tm−k−1
,

so the function Hk(t) has the completely monotonic degree k + 1 if ak+1 6= 0 and, if ak+1 = · · · = ak+p = 0 but
ak+p+1 6= 0, then Hk(t) has the completely monotonic degree k + p + 1.
Remark 5.3. The integral representations (4.1) and (4.2) supply affirmative answers to an open problem posed
in [13, p. 127, Section 4]. See also [12].
Remark 5.4. The inequality (1.11) in Theorem 1.3 or, equivalently, the inequality (4.6) has been further investigated
in the subsequent papers [7, 8].
Remark 5.5. The formulas (1.6) and (4.1) have been applied in [4, 6] to combinatorics and number theory.
Remark 5.6. This paper is a corrected and extended version of the preprint [9].
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