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Abstract

In this paper we show that, under special hypotheses, each δ-Jordan homomorphism ϕ between Banach algebras A
and B is continuous and almost multiplicative.
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1. Introduction

Let A and B be Banach algebras and ϕ : A −→ B be a linear map. Then ϕ is called Jordan homomorphism if
ϕ(a2) = ϕ(a)2 for all a ∈ A [4], and it is called δ-Jordan homomorphism if there exist δ > 0 such that

‖ϕ(a2)− ϕ(a)2‖ ≤ δ ‖a‖2, (a ∈ A).

Moreover, ϕ is said to be multiplicative, if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A, and it is said to be almost multiplicative
[3], if there exist ξ > 0 such that

‖ϕ(ab)− ϕ(a)ϕ(b)‖ ≤ ξ ‖a‖‖b‖, (a, b ∈ A).

It is obvious that if ϕ is multiplicative (almost multiplicative), then it is Jordan homomorphism (δ-Jordan
homomorphism), but the converse is false, in general.

In [5], Zelazko show that if B is commutative and semisimple, then each Jordan homomorphism ϕ : A −→ B is
multiplicative. See also [6] for another characterization of this result.

In this paper we investigate a similar result for δ-Jordan homomorphism and then we give a sufficient conditions
that each δ-Jordan homomorphism ϕ : A −→ B to be almost multiplicative (Theorem 2.5 below).

It is well-known that every multiplicative linear functional ϕ on Banach algebra A is continuous and ‖ϕ‖ ≤ 1,
see [2] for example.

In [3], Jarosz generalized this result and proved the following Theorem.

Theorem 1.1 Let ϕ : A −→ C be an almost multiplicative linear functional, then ϕ is continuous and ‖ϕ‖ ≤ 1+ ξ.
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The next result, which is a generalization of Jarosz’s theorem, obtained in [1].

Theorem 1.2 Let ϕ : A −→ B be an almost multiplicative linear map. If B is semisimple, then ϕ is continuous
and ‖ϕ‖ ≤ 1 + ξ.

2. δ-Jordan homomorphism

The next result show that Theorem 1.1 is valid for δ-Jordan homomorphism instead of almost multiplicative.

Theorem 2.1 Let ϕ be a δ-Jordan homomorphism from Banach algebra A into C. Then ϕ is continuous and
‖ϕ‖ ≤ 1 + δ.

Proof. By definition we have ‖ϕ‖ = sup{|ϕ(a)| : a ∈ A, ‖a‖ = 1}, thus for 0 < λ <
√

δ, there exist a ∈ A with
‖a‖ = 1 and ‖ϕ‖ − λ < |ϕ(a)|. Then

|ϕ(a)|2 − |ϕ(a2)| = |ϕ(a)2| − |ϕ(a2)| ≤ |ϕ(a2)− ϕ(a)2| ≤ δ,

therefore
|ϕ(a)|2 ≤ |ϕ(a2)|+ δ.

Since ‖a‖ = 1, we have
(‖ϕ‖ − λ)2 < |ϕ(a)|2 ≤ |ϕ(a2)|+ δ ≤ ‖ϕ‖+ δ.

Letting λ −→ 0, so ‖ϕ‖2 − ‖ϕ‖ ≤ δ. Then

(2‖ϕ‖ − 1)2 ≤ 1 + 4δ.

It follows that

‖ϕ‖ ≤ 1 +
√

1 + 4δ

2
≤ 1 + δ.

Corollary 2.2 Let ϕ : A −→ C be a δ-Jordan homomorphism. Then for all λ ∈ C, (1 + λ)ϕ is δ-Jordan homo-
morphism.

Theorem 2.3 Let A and B be two Banach algebras and ϕ : A −→ B be a δ-Jordan homomorphism. If B is
semisimple, then ϕ is continuous.

Proof. Let ψ : B −→ C be a δ-Jordan homomorphism. Then ψ is bounded by Theorem 2.1, so we have

|ψ ◦ ϕ(a2)− (ψ ◦ ϕ(a))2| ≤ ‖ψ‖ ‖ϕ(a2)− ϕ(a)2‖ ≤ (1 + δ) δ ‖a‖2.

Therefore ψ ◦ϕ is a η-Jordan homomorphism, where η = δ(1+ δ), thus it is continuous by above Theorem. Suppose
that (an) be a sequence in A such that limn an = a and limn ϕ(an) = b. Then

ψ(b) = ψ(lim
n

ϕ(an)) = lim
n

ψ ◦ ϕ(an) = ψ ◦ ϕ(a),

thus, ψ(b−ϕ(a)) = 0. Since B is semisimple, we get ϕ(a) = b. Therefore ϕ is continuous by the close graph Theorem.

The norm ‖.‖ on a Banach algebra A is called uniform, if ‖a2‖ = ‖a‖2 for all a ∈ A. The uniform Banach
algebra is a Banach algebra with uniform norm.

The proof of the next result is same as of Theorem 2.1.

Theorem 2.4 Let ϕ be a δ-Jordan homomorphism from Banach algebra A into a uniform Banach algebra B. Then
‖ϕ‖ ≤ 1 + δ.

The following theorem, which is the main one in the paper, is criterion for a δ-Jordan homomorphism to be
almost multiplicative.

Theorem 2.5 Let A and B be two commutative Banach algebras and ϕ : A −→ B be a δ-Jordan homomorphism.
Then ϕ is almost multiplicative.
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Proof. Let a, b ∈ A and ‖a‖ = ‖b‖ = 1. Since A and B are commutative, we get

ϕ(ab)− ϕ(a)ϕ(b) =
1
4
[ϕ(u2)− ϕ(u)2 − ϕ(v2) + ϕ(v)2],

where u = a + b and v = a− b. Hence

‖ϕ(ab)− ϕ(a)ϕ(b)‖ ≤ 1
4
‖ϕ(u2)− ϕ(u)2‖+

1
4
‖ϕ(v2)− ϕ(v)2‖ ≤ δ

4
(‖u‖2 + ‖v‖2) ≤ 2δ.

Therefore,
‖ϕ(ab)− ϕ(a)ϕ(b)‖ ≤ 2δ ‖a‖‖b‖.

Put ξ = 2δ, then for all a, b ∈ A, with ‖a‖ = ‖b‖ = 1, we have

‖ϕ(ab)− ϕ(a)ϕ(b)‖ ≤ ξ ‖a‖‖b‖.
Now suppose that a, b ∈ A be arbitrary. Take x = a/‖a‖ and y = b/‖b‖. Then ‖x‖ = ‖y‖ = 1, so by above
argument we get

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ξ ‖x‖‖y‖.
Since ‖x‖ = ‖y‖ = 1, we deduce

‖ϕ(ab)− ϕ(a)ϕ(b)‖ ≤ ξ ‖a‖‖b‖,
for all a, b ∈ A. This complete the proof.

Theorem 2.6 Let ϕ be a almost multiplicative linear functional on Banach algebra A, and ψ ∈ A′. If for all a ∈ A,

|ϕ(a)− ψ(a)| < ε,

then ψ is almost multiplicative.

Proof. Suppose that a, b ∈ A and ‖a‖ = ‖b‖ = 1. Then

|ϕ(a)ϕ(b)− ψ(a)ψ(b)| ≤ |ϕ(b)||ϕ(a)− ψ(a)|+ |ϕ(a)− ψ(a)||ϕ(b)− ψ(b)|+ |ϕ(a)||ϕ(b)− ψ(b)|
≤ ε(|ϕ(a)|+ |ϕ(b)|) + ε2

≤ 2ε ‖ϕ‖+ ε2

≤ 2ε (1 + ξ) + ε2.
Take η = 2ε (1 + ξ) + ε2, then

|ψ(ab)− ψ(a)ψ(b)| ≤ |ψ(ab)− ϕ(ab)|+ |ϕ(ab)− ϕ(a)ϕ(b)|+ |ϕ(a)ϕ(b)− ψ(a)ψ(b)| ≤ ε + ξ + η.

Hence, for all a, b ∈ A with ‖a‖ = ‖b‖ = 1, we have

|ψ(ab)− ψ(a)ψ(b)| ≤ (ε + ξ + η) ‖a‖‖b‖.
Thus ψ is almost multiplicative. The result follows for arbitrary non-zero elements a, b ∈ A, if we replacing a by
a/‖a‖ and b by b/‖b‖ in above inequity.
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