

# On some $BV_{\sigma}$ I-convergent sequence spaces Defined by modulus function

Vakeel.A.Khan<sup>1\*</sup>, Ayhan Esi <sup>2</sup>, Mohd Shafiq<sup>1</sup>

<sup>1</sup>Department of Mathematics Aligarh Muslim University, Aligarh-202002 (INDIA)
<sup>2</sup> Adiyaman University Science and Art Faculty Department of Mathematics 02040, Adiyaman, Turkey
\*Corresponding author E-mail: vakhanmaths@gmail.com

#### Abstract

In this article we introduce and study  ${}_{0}BV_{\sigma}^{I}(f)$ ,  $BV_{\sigma}^{I}(f)$  and  ${}_{\infty}BV_{\sigma}^{I}(f)$  sequence spaces with the help of  $BV_{\sigma}$  [see [23]] and a modulus function f. We study topological, algebraic properties and some inclusion relations on these sequence spaces.

Keywords: Bounded variation, Invariant mean,  $\sigma$ -Bounded variation, Ideal, Filter, modulus function, I-convergence, I-null, symmetric space, Solid space, Sequence algebra.

## 1. Introduction

Let  $\mathbb{N}$ ,  $\mathbb{R}$  and  $\mathbb{C}$  be the sets of all natural, real and complex numbers respectively. We denote

$$\omega = \{x = (x_k) : x_k \in \mathbb{R} \text{ or } \mathbb{C}\}\$$

the space of all real or complex sequences.

Let  $\ell_{\infty}$ , c and  $c_0$  denote the Banach spaces of bounded, convergent and null sequences respectively with norm

$$||x|| = \sup_{k} |x_k|.$$

Let v denote the space of sequences of bounded variation. That is,

$$v = \left\{ x = (x_k) : \sum_{k=0}^{\infty} |x_k - x_{k-1}| < \infty = 0 \right\}$$
 (1.1).

v is a Banach Space normed by

$$||x|| = \sum_{k=0}^{\infty} |x_k - x_{k-1}|$$
 (see[23]).

Let  $\sigma$  be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear functional  $\phi$  on  $\ell_{\infty}$  is said to be an invariant mean or  $\sigma$ -mean if and only if

- (i)  $\phi(x) \ge 0$  where the sequence  $x = (x_k)$  has  $x_k \ge 0$  for all k.
- (ii)  $\phi(e) = 1$  where  $e = \{1, 1, 1, ...\},$
- (iii)  $\phi(x_{\sigma(n)}) = \phi(x)$  for all  $x \in \ell_{\infty}$

If  $x = (x_k)$ , write  $Tx = (Tx_k) = (x_{\sigma(k)})$ . It can be shown that

$$V_{\sigma} = \left\{ x = (x_k) : \lim_{m \to \infty} t_{m,k}(x) = L \text{ uniformly in } k, L = \sigma - \lim x \right\}$$
(1.2)

where  $m \ge 0, k > 0$ .

$$t_{m,k}(x) = \frac{x_k + x_{\sigma(k)} \dots + x_{\sigma^m(k)}}{m+1} \text{ and } t_{-1, k} = 0$$
(1.3)

where  $\sigma_m(k)$  denote the m-th iterate of  $\sigma(k)$  at k. In case  $\sigma$  is the translation mapping, that is,  $\sigma(k)=k+1$   $\sigma$ -mean is called a Banach limit(see,[02]) and  $V_{\sigma}$ , the set of bounded sequences of all whose invariant means are equal, is the set of almost convergent sequences. The special case of (1.2) in which  $\sigma(n)=n+1$  was given by Lorentz[18, Theorem 1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit functional on c (see,[18]) in the sense that

$$\phi(x) = \lim x$$
, for all  $x \in c$  (1.4).

**Remark 1.1.** In view of above discussion we have  $c \subset V_{\sigma}$ 

**Theorem 1.2.** [23,Theorem 1.1] A  $\sigma$ -mean extends the limit functional on c in the sense that  $\phi(x) = \lim x$  for all  $x \in c$  if and only if  $\sigma$  has no finite orbits. That is, if and only if for all  $k \geq 0, j \geq 1, \ \sigma^{j}(k) \neq k$ 

$$\phi_{m,k}(x) = t_{m,k}(x) - t_{m-1,k}(x) \tag{1.5}$$

assuming that  $t_{-1, k} = 0$ 

A straight forward calculation shows that (see[22])

$$\phi_{m,k}(x) = \begin{cases} \frac{1}{m(m+1)} \sum_{j=1}^{m} j(x_{\sigma}^{j}(k) - x_{\sigma}^{j-1}(k)), & \text{if}(m \ge 1), \\ x_{k} & \text{if}(m = 0) \end{cases}$$
(1.6).

For any sequence x, y and scalar  $\lambda$ , we have

$$\phi_{m,k}(x+y) = \phi_{m,k}(x) + \phi_{m,k}(y)$$

and

$$\phi_{m,k}(\lambda x) = \lambda \phi_{m,k}(x)$$

**Definition 1.3.** A sequence  $x \in \ell_{\infty}$  is of  $\sigma$ -bounded variation if and only if

- (i)  $\sum_{m=0}^{\infty} |\phi_{m,k}(x)|$  converges uniformly in k.
- (ii)  $\lim_{m\to\infty} t_{m,k}(x)$ , which must exist, should take the same value for all k.

Subsequently invariant means have been studied by Ahmad and Mursaleen [01,22,23], Raimi [25], Khan and Ebadullah [11,12], King [13] and many others.

Mursaleen [23] defined the sequence space  $BV_{\sigma}$ , the space of all sequence of  $\sigma$  -bounded variation as

$$BV_{\sigma} = \{x \in \ell_{\infty} : \sum_{m} \mid \phi_{m,k}(x) \mid <\infty, \text{uniformly in k} \}$$

**Theorem 1.4.**  $BV_{\sigma}$  is a Banach space normed by

$$||x|| = \sup_{k} \sum_{k} |\phi_{m,k}(x)|$$
 (c.f.[17], [22], [23], [25], [31]).

**Definition 1.5.** A function  $f:[0,\infty)\longrightarrow[0,\infty)$  is called a modulus if

- (1) f(t) = 0 if and only if t = 0,
- (2)  $f(t+u) \le f(t) + f(u)$  for all  $t, u \ge 0$ ,
- (3) f is increasing, and

#### (4) f is continuous from the right at zero.

A modulus function f is said to satisfy  $\Delta_2$  – Condition for all values of u if there exists a constant K > 0 such that  $f(Lu) \leq \mathrm{KL} f(u)$  for all values of L > 1.

The idea of modulus was introduced by Nakano in 1953. (See, Nakano, 1953).

Ruckle [26,27,28] used the idea of a modulus function f to construct the sequence space

$$X(f) = \{x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty\}.$$

This space is an FK space and Ruckle [26,27,28] proved that the intersection of all such X(f) spaces is  $\phi$ , the space of all finite sequences.

The space X(f) is closely related to the space  $\ell_1$  which is an X(f) space with f(x) = x for all real  $x \ge 0$ . Thus Ruckle[26,27,28] proved that, for any modulus f.

$$X(f) \subset \ell_1 \text{ and } X(f)^{\alpha} = \ell_{\infty}$$

Where

$$X(f)^{\alpha} = \{ y = (y_k) \in \omega : \sum_{k=1}^{\infty} f(|y_k x_k|) < \infty \}$$

The space X(f) is a Banach space with respect to the norm

$$||x|| = \sum_{k=1}^{\infty} f(|x_k|) < \infty.(\text{See}[28]).$$

Spaces of the type X(f) are a special case of the spaces structured by B.Gramsch [6]. From the point of view of local convexity, spaces of the type X(f) are quite pathological. Symmetric sequence spaces, which are locally convex have been frequently studied by D.J.H Garling[5], G.Köthe[16], I.J.Maddox [19,20,21] and W.H.Ruckle[26,27,28].

Initially, as a generalization of statistical convergence [4,5], the notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, Salăt and Wilczyńki ([14,15]). Later on, it was studied by Šalát, Tripathy and Ziman [29,30], Tripathy and Hazarika [3,32,33], Hazarika, et,al[7], Khan and Ebadullah [8,9,10,11,12] and many others.

**Definition 1.6.** A set A is said to have asymptotic density  $\delta(A) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathcal{X}_{\mathcal{A}}(k)$ , if it exists, where  $\mathcal{X}_{\mathcal{A}}$  is the characteristic function of A.

**Definition 1.7.** A sequence  $\mathbf{x} = (x_k) \in \omega$  is said to be statistically convergent to a limit  $L \in \mathbb{C}$  if for every  $\epsilon > 0$ , we have

$$\lim_{k \to \infty} \frac{1}{k} |\{n \in \mathbb{N} : |x_k - L| \ge \epsilon, n \le k\}| = 0.$$

where vertical lines denote the cardinality of the enclosed set.

That is, if  $\delta(A(\epsilon)) = 0$ , where

$$A(\epsilon) = \left\{ k \in \mathbb{N} : \mid x_k - L \mid \geq \epsilon \right\}$$

Here we give some definitions and preliminaries about the notion of I-convergence.

**Definition 1.8.** Let N be a non empty set. Then a family of sets  $I \subseteq 2^N$  (power set of N) is said to be an ideal if 1) I is additive i.e  $\forall A, B \in I \Rightarrow A \cup B \in I$ 

2) I is hereditary i.e  $\forall A \in I \text{ and } B \subseteq A \Rightarrow B \in I$ .

**Definition 1.9.** A non-empty family of sets  $\mathcal{L}(I) \subseteq 2^N$  is said to be filter on N if and only if

- 1)  $\Phi \notin \mathcal{L}(I)$ , 2)  $\forall A, B \in \mathcal{L}(I)$  we have  $A \cap B \in \mathcal{L}(I)$ ,
- 3)  $\forall A \in \mathcal{L}(I)$  and  $A \subseteq B \Rightarrow B \in \mathcal{L}(I)$ .

**Definition 1.10.** An Ideal  $I \subseteq 2^N$  is called non-trivial if  $I \neq 2^N$ .

**Definition 1.11.** A non-trivial ideal  $I \subseteq 2^N$  is called admissible if

$$\{\{x\}:x\in N\}\subseteq I.$$

**Definition 1.12.** A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal  $J \neq I$  containing I as a subset.

**Remark 1.13.** For each ideal I, there is a filter  $\mathcal{L}(I)$  corresponding to I. i.e  $\mathcal{L}(I) = \{K \subseteq N : K^c \in I\}$ , where  $K^c = N \setminus K$ .

**Definition 1.14.** A sequence  $x = (x_k) \in \omega$  is said to be *I*-convergent to a number *L* if for every  $\epsilon > 0$ , the set  $\{k \in N : |x_k - L| \ge \epsilon\} \in I$ . In this case, we write  $I - \lim x_k = L$ .

**Definition 1.15.** A sequence  $x = (x_k) \in \omega$  is said to be *I*-null if L = 0. In this case, we write  $I - \lim x_k = 0$ .

**Definition 1.16.** A sequence  $x = (x_k) \in \omega$  is said to be *I*-cauchy if for every  $\epsilon > 0$  there exists a number  $m = m(\epsilon)$  such that  $\{k \in N : |x_k - x_m| \ge \epsilon\} \in I$ .

**Definition 1.17.** A sequence  $x=(x_k)\in\omega$  is said to be *I*-bounded if there exists some M>0 such that  $\{k\in N: |x_k|\geq M\}\in I$ .

**Definition 1.18.** A sequence space E said to be solid(normal) if  $(\alpha_k x_k) \in E$  whenever  $(x_k) \in E$  and for any sequence  $(\alpha_k)$  of scalars with  $|\alpha_k| \le 1$ , for all  $k \in \mathbb{N}$ .

**Definition 1.19.** A sequence space E said to be symmetric if  $(x_{\pi(k)}) \in E$  whenever  $x_k \in E$ , where  $\pi$  is a permutation on  $\mathbb{N}$ 

**Definition 1.20.** A sequence space E said to be sequence algebra if  $(x_k) * (y_k) = (x_k.y_k) \in E$  whenever  $(x_k), (y_k) \in E$ .

**Definition 1.21.** A sequence space E said to be convergence free if  $(y_k) \in E$  whenever  $(x_k) \in E$  and  $x_k = 0$  implies  $y_k = 0$ , for all k.

**Definition 1.22.** Let  $K = \{k_1 < k_2 < k_3 < k_4 < k_5...\} \subset \mathbb{N}$  and E be a Sequence space. A K-step space of E is a sequence space  $\lambda_K^E = \{(x_{k_n}) \in \omega : (x_k) \in E\}.$ 

**Definition 1.23.** A canonical pre-image of a sequence  $(x_{k_n}) \in \lambda_K^E$  is a sequence  $(y_k) \in \omega$  defined by

$$y_k = \begin{cases} x_k, & \text{if } k \in K, \\ 0, & \text{otherwise.} \end{cases}$$

A canonical preimage of a step space  $\lambda_K^E$  is a set of preimages all elements in  $\lambda_K^E$ .i.e. y is in the canonical preimage of  $\lambda_K^E$  iff y is the canonical preimage of some  $x \in \lambda_K^E$ .

**Definition 1.24.** A sequence space E is said to be monotone if it contains the canonical preimages of its step space.

**Definition 1.25.** If  $I = I_f$ , the class of all finite subsets of N. Then, I is an admissible ideal in N and  $I_f$  convergence coincides with the usual convergence.

**Definition 1.26.** If  $I = I_{\delta} = \{A \subseteq N : \delta(A) = 0\}$ . Then, I is an admissible ideal in N and we call the  $I_{\delta}$ -convergence as the logarithmic statistical convergence.

**Definition 1.27.** If  $I = I_d = \{A \subseteq N : d(A) = 0\}$ . Then, I is an admissible ideal in N and we call the  $I_d$ -convergence as the asymptotic statistical convergence.

**Remark 1.28.** If  $I_{\delta} - \lim x_n = l$ , then  $I_d - \lim x_n = l$ 

We used the following lemmas for establishing some results of this article.

Lemma(I). Every solid space is monotone

**Lemma(II)**. Let  $K \in \mathcal{L}(I)$  and  $M \subseteq N$ . If  $M \notin I$ , then  $M \cap K \notin I$ .

**Lemma(III)**. If  $I \subseteq 2^N$  and  $M \subseteq N$ . If  $M \notin I$ , then  $M \cap N \notin I$ .

Khan and K.Ebadullah[18] introduced and studied the following sequence space.

For  $m \geq 0$ 

$$BV_{\sigma}^{I} = \left\{ x = x_{k} \in \omega : \left\{ k \in \mathbb{N} : |\phi_{m,k}(x) - L| \ge \epsilon \right\} \in I, \text{ for some } L \in \mathbb{C} \right\}.$$
 (2.1)

# 2. Main results

In this article we introduced and studied the following classes of sequence spaces:

$$BV_{\sigma}^{I}(f) = \left\{ x = (x_{k}) \in \omega : \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x) - L|\right) \ge \epsilon \right\} \in I, \text{ for some } L \in \mathbb{C} \right\}; \tag{2.2}$$

$${}_{0}BV_{\sigma}^{I}(f) = \left\{ x = (x_{k}) \in \omega : \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x)|\right) \ge \epsilon \right\} \in I, \right\}; \tag{2.3}$$

$${}_{\infty}BV_{\sigma}^{I}(f) = \left\{ x = (x_{k}) \in \omega : \left\{ k \in \mathbb{N} : \exists K > 0, \sum_{m=0}^{\infty} f\left(\mid \phi_{m,k}(x) \mid \right) \ge K \right\} \in I \right\}; \tag{2.4}$$

$${}_{\infty}BV_{\sigma}(f) = \left\{ x = (x_k) \in \omega : \sup_{k} \sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x)|\right) < \infty \right\}.$$
 (2.5)

Also we write

$$\mathcal{M}_{BV_{\sigma}}(f) = BV_{\sigma}^{I}(f) \cap {}_{\infty}BV_{\sigma}(f)$$

and

$${}_{0}\mathcal{M}^{I}_{BV_{\sigma}}(f) = {}_{0}BV_{\sigma}^{I}(f) \cap {}_{\infty}BV_{\sigma}(f).$$

**Theorem 2.1.** For any modulus function f, the classes of sequence  ${}_{0}BV_{\sigma}^{I}(f)$ ,  $BV_{\sigma}^{I}(f)$ ,  ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}(f)$  and  $\mathcal{M}_{BV_{\sigma}}^{I}(f)$  are the linear spaces.

**Proof.** We shall prove the result for the space  $BV_{\sigma}^{I}(f)$ . Rests will follow similarly. For, let  $x = (x_k), \ y = (y_k) \in BV_{\sigma}^{I}(f)$  be any two arbitrary elements and let  $\alpha, \beta$  be scalars. Now, since  $(x_k), (y_k) \in BV_{\sigma}^{I}(f)$ , then, there exists  $L_1, L_2 \in \mathbb{C}$  such that the sets

$$A_1 = \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(x) - L_1 \mid \right) \ge \frac{\epsilon}{2} \right\} \in I$$
 (2.6)

and

$$A_2 = \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(x) - L_2 \mid \right) \ge \frac{\epsilon}{2} \right\} \in I$$
 (2.7).

Since, f is modulus function, we have,

$$\sum_{m=0}^{\infty} f\left( \mid (\alpha \phi_{m,k}(x) + \beta \phi_{m,k}(y)) - (\alpha L_1 + \beta L_2) \mid \right) \\
\leq \sum_{m=0}^{\infty} f\left( \mid \alpha \mid \mid \phi_{m,k}(x) - L_1 \mid \right) + \sum_{m=0}^{\infty} f\left( \mid \beta \mid \mid \phi_{m,k}(y) - L_2 \mid \right). \\
\leq \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(x) - L_1 \mid \right) + \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(y) - L_2 \mid \right) \tag{2.8}.$$

Therefore, by (2.6), (2.7) and (2.8), we have,

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left( \mid (\alpha \phi_{m,k}(x) + \beta \phi_{m,k}(y)) - (\alpha L_1 + \beta L_2) \mid \right) \ge \epsilon \right\} \subseteq \left[A_1 \cup A_2\right] \in I.$$

implies that

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(\mid (\alpha \phi_{m,k}(x) + \beta \phi_{m,k}(y)) - (\alpha L_1 + \beta L_2)\mid \right) \ge \epsilon\right\} \in I.$$

But  $(x_k), (y_k) \in BV_{\sigma}^I(M)$  are the arbitrary elements Therefore,  $\alpha x_k + \beta y_k \in BV_{\sigma}^I(f)$ , for all  $(x_k), (y_k) \in BV_{\sigma}^I(f)$  and for all scalars  $\alpha, \beta$ 

Hence,  $BV_{\sigma}^{I}(f)$  is linear

**Theorem 2.2.** A sequence  $x=(x_k)\in\mathcal{M}_{BV_\sigma}(f)$  I-converges if and only if for every  $\epsilon>0$ , there exists  $N_\epsilon\in\mathbb{N}$  such that

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_k) - \phi_{m,k}(x_{N_{\epsilon}})| < \epsilon \right\} \in \mathcal{L}(I)$$
(2.9)

**Proof.** Let  $x = (x_k) \in \mathcal{M}_{BV_{\sigma}}(f)$ . Suppose that  $L = I - \lim x$ . Then, the set

$$B_{\epsilon} = \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_k) - L|) < \frac{\epsilon}{2} \right\} \in \mathcal{L}(I), \text{ for all } \epsilon > 0.$$

Fix an  $N_{\epsilon} \in B_{\epsilon}$ . Then we have

$$\sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x_k) - \phi_{m,k}(x_{N_{\epsilon}})|\right)$$

$$\leq \sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x_{N_{\epsilon}}) - L|\right)$$

$$+ \sum_{m=0}^{\infty} f\left(|L - \phi_{m,k}(x_k)|\right) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

which holds for all  $k \in B_{\epsilon}$ . Hence

$$\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x) - \phi_{m,k}(x_{N_{\epsilon}})|\right) < \epsilon\} \in \mathcal{L}(I).$$

Conversely, suppose that

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(|\phi_{m,k}(x_k) - \phi_{m,k}(x_{N_{\epsilon}})|\right) < \epsilon\right\} \in \mathcal{L}(I).$$

Then, being f a modulus function and by using basic triangular inequality, we have

$$\left\{k \in \mathbb{N} : \left| \sum_{m=0}^{\infty} f \left( \mid \phi_{m,k}(x_k) \mid \right) - \sum_{m=0}^{\infty} f \left( \mid \phi_{m,k}(x_{N_{\epsilon}}) \mid \right) \right| < \epsilon \right\} \in \mathcal{L}(I), \text{ for all } \epsilon > 0.$$

Then, the set

$$C_{\epsilon} = \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_k)|) \in \left[ \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_{N_{\epsilon}})|) - \epsilon, \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_{N_{\epsilon}})|) + \epsilon \right] \right\} \in \mathcal{L}(I).$$

Let 
$$J_{\epsilon} = \left[ \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_{N_{\epsilon}})|) - \epsilon, \sum_{m=0}^{\infty} f(|\phi_{m,k}(x_{N_{\epsilon}})|) + \epsilon \right].$$
  
If we fix an  $\epsilon > 0$  then, we have  $C_{\epsilon} \in \mathcal{L}(I)$  as well as  $C_{\frac{\epsilon}{2}} \in \mathcal{L}(I)$ .

Hence  $C_{\epsilon} \cap C_{\frac{\epsilon}{2}} \in \mathcal{L}(I)$ . This implies that

$$J = J_{\epsilon} \cap J_{\frac{\epsilon}{2}} \neq \phi.$$

That is

$${k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(\mid \phi_{m,k}(x_k)\mid\right) \in J} \in \mathcal{L}(I).$$

That is

$$diam J < diam J_{\epsilon}$$

where the diam of J denotes the length of interval J.

In this way, by induction we get the sequence of closed intervals

$$J_{\epsilon} = I_0 \supseteq I_1 \supseteq \dots \supseteq I_k \supseteq \dots$$

with the property that  $diamI_k \leq \frac{1}{2}diamI_{k-1}$  for (k=2,3,4,....) and

$$\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f\bigg(\mid \phi_{m,k}(x_k)\mid\bigg) \in I_k\} \in \pounds(I) \text{ for } (\mathbf{k}=1,2,3,4,.....).$$
 Then there exists a  $\xi \in \cap I_k$  where  $k \in \mathbb{N}$  such that

$$L = I - \lim_{k} \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(x_k) \mid \right).$$

showing that  $x = (x_k) \in \mathcal{M}_{BV_{\sigma}}(f)$  is *I*-convergent. Hence the result.

**Theorem 2.3.** Let  $f_1$  and  $f_2$  be two modulus functions and satisfying  $\Delta_2 - Condition$ , then,

(a) 
$$\mathcal{X}(f_2) \subseteq \mathcal{X}(f_1 f_2)$$
  
(b)  $\mathcal{X}(f_1) \cap (f_2) \subseteq \mathcal{X}(f_1 + f_2)$  for  $\mathcal{X} = {}_{0}BV_{\sigma}^{I}$ ,  $BV_{\sigma}^{I}$ ,  ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}$  and  $\mathcal{M}_{BV_{\sigma}}^{I}$ 

**Proof.** (a) Let  $x = (x_k) \in {}_{0}BV^{I}_{\sigma}(f_2)$  be any arbitrary element. Then, the set

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f_2 \left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\} \in I \tag{2.10}.$$

Let  $\epsilon > 0$  and choose  $\delta$  with  $0 < \delta < 1$  such that  $f_1(t) < \epsilon$ ,  $0 \le t \le \delta$ .

Write  $y_k = f_2 \left( \mid \phi_{m,k}(x) \mid \right)$  and consider

$$\lim_{k} f_1(y_k) = \lim_{y_k \le \delta, k \in \mathbb{N}} f_1(y_k) + \lim_{y_k > \delta, k \in \mathbb{N}} f_1(y_k).$$

Now, since  $f_1$  is a modulus function,

Therefore, we have

$$\lim_{y_k \le \delta, k \in \mathbb{N}} f_1(y_k) \le f_1(2) \lim_{y_k \le \delta, k \in \mathbb{N}} (y_k)$$
(2.11)

For  $y_k > \delta$ , we have  $y_k < \frac{y_k}{\delta} < 1 + \frac{y_k}{\delta}$ 

Now, since  $f_1$  is non-decreasing, it follows that

$$f_1(y_k) < f_1(1 + \frac{y_k}{\delta}) < \frac{1}{2}f_1(2) + \frac{1}{2}f_1(\frac{2y_k}{\delta})$$

Again, since  $f_1$  satisfies  $\Delta_2$  – Condition, we have

$$f_1(y_k) < \frac{1}{2}K\frac{(y_k)}{\delta}f_1(2) + \frac{1}{2}K\frac{(y_k)}{\delta}f_1(2)$$

Thus,

$$f_1(y_k) < K \frac{(y_k)}{\delta} f_1(2).$$

Hence,

$$\lim_{y_k > \delta, k \in \mathbb{N}} f_1(y_k) \le \max\{1, K\delta^{-1} f_1(2) \lim_{y_k > \delta, k \in \mathbb{N}} (y_k)$$
 (2.12).

Therefore, from (2.10),(2.11) and (2.12), we have,

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f_1(y_k) \ge \epsilon \right\} \in I$$

i.e.

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f_1 f_2 \left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\} \in I$$

implies that

$$x = (x_k) \in_0 BV_\sigma^I(f_1 f_2).$$

Thus,

$$_{0}BV_{\sigma}^{I}(f_{2})\subseteq _{0}BV_{\sigma}^{I}(f_{1}f_{2})$$

Hence,  $\mathcal{X}(f_2) \subseteq \mathcal{X}(f_1 f_2)$  for  $\mathcal{X} = {}_0 B V_{\sigma}^I$ For  $\mathcal{X} = B V_{\sigma}^I$ ,  $\mathcal{X} = {}_0 \mathcal{M}_{BV_{\sigma}}^I$  and  $\mathcal{X} = \mathcal{M}_{BV_{\sigma}^I}$  the inclusions can be established similarly.

(b) Let  $x = (x_k) \in {}_{0}BV_{\sigma}^I(f_1) \cap {}_{0}BV_{\sigma}^I(f_2)$ . Let  $\epsilon > 0$  be given. Then, the sets

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} f_1 \left( \mid \phi_{m,k}(x) \right) \ge \frac{\epsilon}{2} \right\} \in I,$$

and

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f_2 \left( |\phi_{m,k}(x)| \right) \ge \frac{\epsilon}{2} \right\} \in I,$$

Therefore, the inclusion

$$\left\{k \in \mathbb{N} : \sum_{m=0}^{\infty} (f_1 + f_2) \left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\}$$

$$\subseteq \left[ \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f_1 \left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\} \right]$$

$$\cup \left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f_2 \left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\} \right] \in I,$$

implies that

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} (f_1 + f_2) \left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\} \in I$$

Thus,  $x=(x_k)\in {}_0BV_\sigma^I(f_1+f_2)$ Hence,  ${}_0BV_\sigma^I(f_1)\cap {}_0BV_\sigma^I(f_2)\subseteq {}_0BV_\sigma^I(f_1+f_2)$ For  $\mathcal{X}=BV_\sigma^I$ ,  $\mathcal{X}={}_0\mathcal{M}_{BV_\sigma}^I$  and  $\mathcal{X}=\mathcal{M}_{BV_\sigma}^I$  the inclusions are similar.

For  $f_2(x) = x$  and  $f_1(x) = M(x)$ , for all  $x \in [0, \infty)$ , we have the following corollary.

Corollary 2.4.  $\mathcal{X} \subseteq \mathcal{X}(f)$  for  $\mathcal{X} = {}_{0}BV_{\sigma}^{I}$ ,  $BV_{\sigma}^{I}$ ,  ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}$  and  $\mathcal{M}_{BV_{\sigma}}^{I}$ .

**Theorem 2.5.** The spaces  ${}_{0}BV_{\sigma}^{I}(f)$  and  ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}(f)$  are solid and monotone.

**Proof.** We shall prove the result for  ${}_{0}BV_{\sigma}^{I}(f)$ . For  ${}_{0}\mathcal{M}_{BV_{\sigma}}^{I}(f)$ , the result can be proved similarly. For, let  $x = (x_{k}) \in {}_{0}BV_{\sigma}^{I}(f)$ , then the set

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(x) \mid \right) \ge \epsilon \right\} \in I$$
 (2.13)

Let  $(\alpha_k)$  be a sequence of scalars with  $|\alpha_k| \leq 1$  for all  $k \in \mathbb{N}$ . Then, the result follows from (2.12) and the inequality

$$f\left(\mid \alpha_k \phi_{m,k}(x)\mid\right) \leq \mid \alpha_k\mid f\left(\mid \phi_{m,k}(x)\mid\right) \leq f\left(\mid \phi_{m,k}(x)\mid\right), \text{ for all } k\in\mathbb{N}.$$

The space is monotone follows from lemma(I). Hence the result.

**Theorem 2.6.** The spaces  $BV_{\sigma}^{I}(f)$  and  $\mathcal{M}_{BV_{\sigma}^{I}}(f)$  are not neither solid nor monotone.

**Proof.** Here we give a counter example for the proof of this result.

Counter example. Let  $I = I_f$  and f(x) = x for all  $x \in [0, \infty)$ . Consider the K-step  $\mathcal{Z}_K$  of  $\mathcal{Z}$  defined as follows.

Let  $(x_k) \in \mathcal{Z}$  and let  $(y_k) \in \mathcal{Z}_K$  be such that

$$y_k = \begin{cases} x_k, & \text{if k is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Consider the sequence  $(x_k)$  defined as by  $x_k = 1$  for all  $k \in \mathbb{N}$ . Then  $(x_k) \in BV_{\sigma}^I(f)$  and  $\mathcal{M}_{BV_{\sigma}}(f)$  but its K-step preimage does not belong to  $BV_{\sigma}^I(f)$  and  $\mathcal{M}_{BV_{\sigma}}(f)$ .

Thus,  $BV_{\sigma}^{I}(f)$  and  $\mathcal{M}_{BV_{\sigma}}(f)$  are not monotone. Hence  $BV_{\sigma}^{I}(f)$  and  $\mathcal{M}_{BV_{\sigma}}(f)$  are not solid by lemma(I).

**Theorem 2.7.** The spaces  $BV_{\sigma}^{I}(f)$  and  ${}_{0}BV_{\sigma}^{I}(f)$  are sequence algebra.

**Proof.** Let  $(x = x_k)$  and  $(y = y_k)$  be two elements of  ${}_{0}BV_{\sigma}^{I}(f)$ .

Then, the sets

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(\mid \phi_{m,k}(x)\mid\right) \ge \epsilon \right\} \in I$$

and

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(y) \mid \right) \ge \epsilon \right\} \in I$$

Therefore,

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left( \mid \phi_{m,k}(x).\phi_{m,k}(y) \mid \right) \ge \epsilon \right\} \in I.$$

Thus,  $(x_k).(y_k) \in {}_0BV_\sigma^I(f)$ . Hence  ${}_0BV_\sigma^I(f)$  is sequence algebra. For  $BV_\sigma^I(f)$ , the result can be proved similarly.

**Theorem 2.8.** If I is not maximal and  $I \neq I_f$ , then the spaces  $BV_{\sigma}^I(f)$  and  ${}_0BV_{\sigma}^I(f)$  are not symmetric.

**Proof.** Let  $A \in I$  be an infinite set and f(x) = x for all  $x \in [0, \infty)$ . If

$$x_k = \begin{cases} 1, & \text{if } k \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Then, it is clear that  $(x_k) \in {}_{0}BV_{\sigma}^{I}(f \subsetneq BV_{\sigma}^{I}(f))$ 

Let  $K \subseteq \mathbb{N}$  be such that  $K \notin I$  and  $\mathbb{N} \setminus K \notin I$ 

Let  $\phi: K \to A$  and  $\psi: K^c \to A^c$  be a bijective maps. Then, the mapping  $\pi: \to \mathbb{N} \to \mathbb{N}$  defined by

$$\pi(k) = \left\{ \begin{array}{cc} \phi(k), & \text{if } k \in K, \\ \psi k, & \text{otherwise.} \end{array} \right.$$

is a permutation on  $\mathbb{N}$ 

But  $(x_{\pi}(k)) \notin BV_{\sigma}^{I}(f)$  and hence  $(x_{\pi}(k)) \notin {}_{0}BV_{\sigma}^{I}(f)$  showing that  $BV_{\sigma}^{I}(f)$  and  ${}_{0}BV_{\sigma}^{I}(f)$  are not symmetric sequence spaces.

**Theorem 2.9.** Let f be a modulus function.

Then,  ${}_{0}BV_{\sigma}^{I}(f) \subset BV_{\sigma}^{I}(f) \subset {}_{\infty}BV_{\sigma}^{I}(f)$  and the inclusions are proper.

**Proof.** The inclusion  ${}_{0}BV_{\sigma}^{I}(f) \subset BV_{\sigma}^{I}(f)$  is obvious.

Next, let  $(x_k) \in BV_{\sigma}^I(f)$ . Then there exists  $L \in \mathbb{C}$  such that

$$\left\{ k \in \mathbb{N} : \sum_{m=0}^{\infty} f\left(\mid \phi_{m,k}(x) - L\mid\right) \ge \epsilon \right\} \in I.$$

We have

$$f\left(\mid\phi_{m,k}(x)\mid\right) \leq \frac{1}{2}f\left(\mid\phi_{m,k}(x)-L\mid\right) + f\left(\frac{1}{2}\mid L\mid\right)$$

Taking supremum over k on both sides, we get  $(x_k) \in_{\infty} BV_{\sigma}^{I}(f)$ 

Hence,  ${}_{0}BV_{\sigma}^{I}(f) \subset BV_{\sigma}^{I}(f) \subset {}_{\infty}BV_{\sigma}^{I}(f)$ 

Next, we show that the inclusions are proper.

For, Let us consider  $I = I_d$ ,  $f(x) = x^2$  for all  $x \in [0, \infty)$ . Consider the sequence  $(x_k)$  defined by  $x_k = 1$ . Then  $(x_k) \in BV_{\sigma}^I(f)$  but  $(x_k) \notin {}_{\sigma}BV_{\sigma}^I(f)$ 

Again, consider the sequence  $(y_k)$  defined by

$$y_k = \begin{cases} 2, & \text{if k is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Then  $(y_k) \in {}_{\infty}BV_{\sigma}^I(f)$  but  $(y_k) \notin BV_{\sigma}^I(f)$ 

# Acknowledgements

The authors would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

## References

- [1] Z.U.Ahmad, M.Mursaleen: An application of Banach limits. Proc. Amer. Math. soc. 103,244-246,(1983).
- [2] S.Banach: Theorie des operations lineaires, Warszawa. (1932). 103,244-246(1986).
- [3] K. Demirci: I-limit superior and limit inferior. Math. Commun., 6:165-172(2001).
- [4] H.Fast: Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [5] J.A.Fridy: On statistical convergence, Analysis. 5(1985).301-313.
- [6] B.Gramsch : Die Klasse metrisher linearer Raume  $L(\phi)$ , Math.Ann.171(1967), 61-78.
- [7] B.Hazarika, T.Karan and B.K Singh: Zweier Ideal convergent sequence space defined by Orlicz function, Journal of mathematics and computer science 8 (2014), 307-318

- [8] V.A.Khan, K.Ebadullah, Li Xiao-Min and M.Shafiq: on some generalized I-convergent sequence spaces defined by modulus function., Theory and application of Mathematics and Computer Science, 2(2),1-11,(2012)
- [9] V.A.Khan and K.Ebadullah: On some I-Convergent sequence spaces defined by a modullus function., Theory and Applications of Mathematics and Computer Science. 1(2),22-30, (2011).
- [10] V.A. Khan, K. Ebadullah, A.Esi, N. Khan, M. Shafiq: On paranorm Zweier I-convergent sequences spaces, Journal of Mathematics (Hindawi Publishing Corporation) Volume 2013 (2013), Article ID 613501, 6 pages
- [11] V.A Khan and K.Ebadullah: On some new I-convergent sequence space., Mathematics, Aeterna, Vol. 3 No. 2151-159 (2013).
- [12] V.A.Khan and K. Ebadullah, K.: On a new I-convergent sequence space. Analysis, 32, 199-208 (2012).
- [13] J.P.King: Almost summable Sequences. Proc.Amer. Math. soc.17,1219-1225,(1966).
- [14] P.Kostyrko, M. Mačaj and T.Šalát: Statistical convergence and I-convergence. Real Analysis Exchange.
- [15] P.Kostyrko, T.Šalát and W.Wilczyński : I-convergence, Raal Analysis Analysis Exchange. 26(2), 669-686(2000).
- [16] G. Köthe: Topological Vector spaces. 1. (Springer, Berlin, 1970.)
- [17] C.G.Lascarides: On the equivalence of certain sets of sequences, Indian J. Math. 25(1983),41-52.
- [18] G.G. Lorentz,: A contribution to the theory of divergent series. Acta Math., 80: 167-190(1948).
- [19] I.J.Maddox,: Elements of Functional Analysis, Cambridge University Press. (1970)
- [20] I.J. Maddox: Paranormed sequence spaces generated by infinite matrices., Math. Proc. Cambridge Philos. Soc. 64 (1968) 335340
- [21] I.J.Maddox :Sequence spaces defined by a modulus., Math. Camb. Phil. Soc. 100(1986), 161-166.
- [22] M.Mursaleen: Matrix transformation between some new sequence spaces. Houston J. Math., 9: 505-509(1983).
- [23] M. Mursaleen: On some new invariant matrix methods of summability. Quart. J. Math. Oxford, (2)34: 77-86(1983).
- [24] H. Nakano: Modular sequence spaces., Proc. Jpn. Acad. Ser. A Math. Sci. 27 (1951) 508512.
- [25] R.A.Raimi: Invariant means and invariant matrix methods of summability. Duke J. Math., 30: 81-94(1963).
- [26] W.H.Ruckle: On perfect Symmetric BK-spaces., Math. Ann. 175 (1968) 121-126.
- [27] W.H.Ruckle: Symmetric coordinate spaces and symmetric bases, Canad. J.Math. 19(1967) 828-838.
- [28] W.H.Ruckle: FK-spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25(5)(1973)973-975.
- [29] T.Šalát,B.C.Tripathy and M.Ziman: On some properties of I-convergence. Tatra Mt. Math. Publ., 28: 279-286(2004).
- [30] T.Šalát B.C.Tripathy and M.Ziman: On I-convergence field. Ital.J.Pure Appl. Math., 17: 45-54(2005).
- [31] P.Schafer: Infinite matrices and Invariant means. Proc. Amer. Math. soc. 36, 104-110, (1972).
- [32] B.C.Tripathy and B.Hazarika: Paranorm I-convergent sequence spaces. Math. Slovaca. 59(4):485-494(2009).
- [33] B.C. Tripathy, B. Hazarika: I-convergent sequence spaces associated with multiplier sequences, Math. Ineq. Appl. 11 (3) (2008) 543548.
- [34] B.C.Tripathy and B.Hazarika: Some I-Convergent sequence spaces defined by Orlicz function., Acta Mathematicae Applicatae Sinica. 27(1)149-154. (2011)