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Abstract

In this article we introduce and study ¢BV.(f), BV.(f) and  BV(f) sequence spaces with the help of BV, [see
[23]] and a modulus function f. We study topological, algebraic properties and some inclusion relations on these
sequence spaces.
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1. Introduction

Let N, R and C be the sets of all natural, real and complex numbers respectively.
We denote
w={x=(zr):2r € Ror C}

the space of all real or complex sequences.
Let /o, ¢ and ¢y denote the Banach spaces of bounded, convergent and null sequences respectively with norm
l[#]| = sup |z | -
k

Let v denote the space of sequences of bounded variation. That is,

v:{mz(xk):§)|mk—xk_1|<oo=0} (1.1).

v is a Banach Space normed by
o0

Joll =" Jap —axr | (seef23]).
k=0
Let o0 be a mapping of the set of the positive integers into itself having no finite orbits. A continuous linear
functional ¢ on £, is said to be an invariant mean or o-mean if and only if
(i) ¢(x) > 0 where the sequence z = (x) has x > 0 for all k.
(ii) ¢(e) =1 where e= {1,1,1,...},
(iii) ¢(r4m)) = ¢(x) for all x € £
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If 2 = (w), write Tx = (T'zy) = (24 1)). It can be shown that

m—00

Vo = {z = (xg): lim ¢ k(z) = L uniformly in k,L =0 — limx} (1.2)

where m > 0, k > 0.

Tk + T k). + Tom (k)
dit_ =0 1.3
m 1 and £, (1.3)

where o, (k) denote the m —th iterate of o (k) at k. In case o is the translation mapping, that is, o(k)=k+1 o-mean
is called a Banach limit(see,[02]) and V,,, the set of bounded sequences of all whose invariant means are equal, is the
set of almost convergent sequences. The special case of (1.2) in which o(n)=n+1 was given by Lorentz[18, Theorem
1], and that the general result can be proved in a similar way. It is familiar that a Banach limit extends the limit
functional on ¢ (see,[18]) in the sense that

tm,k(a:) =

¢(x) =lima, for all z € ¢ (1.4).

Remark 1.1. In view of above discussion we have ¢ C V,

Theorem 1.2. [23,Theorem 1.1] A o-mean extends the limit functional on ¢ in the sense that ¢(x) = limz for all
x € cif and only if o has no finite orbits. That is, if and only if for all k > 0,5 > 1, o7 (k) # k
Put

Gk (T) =t g () — tm—1 k() (1.5)

assuming that t_; =0
A straight forward calculation shows that (see[22])

e & (e () = a7 (), if(m 2 1),
]:
Tk if(m = 0)

¢7n,k(x) = (16)

For any sequence z,y and scalar A, we have

k(@ +Y) = Smp(T) + Pk (y)
and
Pk (AT) = Ay k(1)
Definition 1.3. A sequence x € ¢ is of o-bounded variation if and only if
(1) §0 | ¢m.k(z) | converges uniformly in k.

(ii) lm ¢, ,(x), which must exist, should take the same value for all k.

Subsequently invariant means have been studied by Ahmad and Mursaleen [01,22,23], Raimi [25], Khan and
Ebadullah [11,12] ,King [13] and many others.

Mursaleen [23] defined the sequence space BV, the space of all sequence of o -bounded variation as
BV ={z € lw Z | dm.i(x) |< 0o, uniformly in k}

Theorem 1.4. BV, is a Banach space normed by

| [|= Sgpz | o k() | (c.f-[17], [22], [23], [25], [31]).

Definition 1.5. A function f : [0,00)—[0,00) is called a modulus if
(1) f(t) =0 if and only if t = 0,

(2) fE+u)< f(t)+ f(u) for all t, u>0,

(3) f is increasing, and
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(4) f is continuous from the right at zero.

A modulus function f is said to satisfy Ay — Condition for all values of u if there exists a constant K > 0 such
that f(Lu) < KLf(u) for all values of L > 1.

The idea of modulus was introduced by Nakano in 1953.(See , Nakano, 1953).

Ruckle [26,27,28] used the idea of a modulus function f to construct the sequence space

X(f) = A{z = (a) = ) f(lanl) < o0}

k=1

This space is an FK space and Ruckle[26,27,28] proved that the intersection of all such X (f) spaces is ¢, the
space of all finite sequences.
The space X(f) is closely related to the space ¢; which is an X (f) space with f(z) = « for all real x > 0. Thus
Ruckle[26,27,28] proved that, for any modulus f.

X(f) Cty and X(f)* = Lo
Where

X(H*={y= () €w: Y flyszs]) < o0}

k=1
The space X(f) is a Banach space with respect to the norm

llel] =D f(laxl) < oo.(See[28)).

k=1

Spaces of the type X (f) are a special case of the spaces structured by B.Gramsch [6]. From the point of view of local
convexity, spaces of the type X (f) are quite pathological. Symmetric sequence spaces, which are locally convex
have been frequently studied by D.J.H Garling[5], G.K6the[16] , I.J.Maddox [19,20,21] and W.H.Ruckle[26,27,28].

Initially, as a generalization of statistical convergence[4,5], the notation of ideal convergence (I-convergence) was
introduced and studied by Kostyrko, Macaj, Salat and Wilczyriki ([14,15]). Later on, it was studied by Salét,
Tripathy and Ziman [29,30], Tripathy and Hazarika [3,32,33], Hazarika, et,al[7], Khan and Ebadullah [8,9,10,11,12]
and many others.

n—oo

n
Definition 1.6. A set A is said to have asymptotic density §(A) = lim 1 3 X,(k), if it exists , where X4 is the
i=1

characteristic function of A.

Definition 1.7. A sequence x=(zj) € w is said to be statistically convergent to a limit L € C if for every € > 0,
we have

1
hinEHn eEN: |z —L| >e,n <k} =0.
where vertical lines denote the cardinality of the enclosed set.

That is, if 6(A(e)) = 0, where
A(e):{kEN:|xk—L|>e}
Here we give some definitions and preliminaries about the notion of I-convergence.

Definition 1.8. Let N be a non empty set. Then a family of sets I C 2%V (power set of N) is said to be an ideal if
1) I is additive i.e VA,Be I = AUB¢el
2) I is hereditary i.e VA € Jand BC A= Bel.
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Definition 1.9. A non-empty family of sets £(I) C 2% is said to be filter on N if and only if

1) @ ¢ £(I),

2)V A, B € £(I) we have AN B € £(I),

3)VAe £(T)and AC B= B e £(I).

Definition 1.10. An Ideal I C 2V is called non-trivial if I # 2.
Definition 1.11. A non-trivial ideal I C 2V is called admissible if

{{z}:ze N} C 1.

Definition 1.12. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J # I containing I as
a subset.

Remark 1.13. For each ideal I, there is a filter £(I) corresponding to I.
ie £(I) ={K CN:K°elI}, where K°=N\ K.

Definition 1.14. A sequence z = (zy) € w is said to be I-convergent to a number L if for every e > 0, the set
{ke N:|zp—L| >¢} €l
In this case, we write I — limx, = L.

Definition 1.15. A sequence z = (z3) € w is said to be I-null if L = 0. In this case, we write I — limz; = 0.

Definition 1.16. A sequence x = (zx) € w is said to be I-cauchy if for every e > 0 there exists a number m = m(e)
such that {k € N : |z, — x| > €} € I

Definition 1.17. A sequence x = (z) € w is said to be I-bounded if there exists some M > 0 such that
{keN:|z| > M} el

Definition 1.18. A sequence space E said to be solid(normal) if (axxr) € E whenever (x;) € E and for any
sequence(ay,) of scalars with | ay |< 1, for all k£ € N.

Definition 1.19. A sequence space E said to be symmetric if (2,(x)) € £ whenever z3 € E. where 7 is a permu-
tation on N

Definition 1.20. A sequence space E said to be sequence algebra if (xy) * (yx) = (zr.yx) € E whenever
(z), (uk) € E.

Definition 1.21. A sequence space E said to be convergence free if (yx) € E whenever (zx) € E and z; = 0
implies y;, = 0, for all k.

Definition 1.22. Let K = {k; < ko < k3 < k4 < ks...} C N and E be a Sequence space. A K-step space of E is a
sequence space A\ = {(z,) € w: (xx) € E}.

Definition 1.23. A canonical pre-image of a sequence (z,) € AE is a sequence (yx) € w defined by

. Ty, ifkeK,
Yk = 0, otherwise.

A canonical preimage of a step space A% is a set of preimages all elements in AE .i.e. y is in the canonical preimage
of M\ iff y is the canonical preimage of some x € A\Z.

Definition 1.24. A sequence space E is said to be monotone if it contains the canonical preimages of its step space.

Definition 1.25. If I = Iy, the class of all finite subsets of N. Then, I is an admissible ideal in N and Iy
convergence coincides with the usual convergence.
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Definition 1.26. If I = Is = {A C N : 6(A) = 0}. Then, [ is an admissible ideal in N and we call the I;-
convergence as the logarithmic statistical convergence.

Definition 1.27. If I = I; = {A C N : d(A) = 0}. Then, I is an admissible ideal in N and we call the I4-
convergence as the asymptotic statistical convergence.

Remark 1.28. If I — limz,, = [, then I; — limz,, =1
We used the following lemmas for establishing some results of this article.
Lemma(I). Every solid space is monotone
Lemma(II). Let K € £(I) and M C N. If M ¢ I, then M NK ¢ I.
Lemma(III). If I C2¥ and M C N. If M ¢ I, then M NN ¢ I.
Khan and K.Ebadullah[18] introduced and studied the following sequence space.

For m >0

BV! = {:1: =T Ew: {k eN:| ¢mi(zr)—L|> e} € I,for some L € (C}. (2.1)

2. Main results

In this article we introduced and studied the following classes of sequence spaces:

BVI(f) = {a: = (zx) Ew: {k eEN: i f< Gmp(z) — L > > e} € I, for some L € C}; (2.2)
DBV (f) = { — (@) cw: {ken: mif( bmr(@)]) 2 e }; (23)
~BVI(f) = {x = (z}) Ew: {k eEN:IK > o,gf< G k() |> > K} € 1}; (2.4)
0BV (f) = {x = (zk) €w: sgpwif(l D k() |> < 00} (2.5)

Also we write
My, (f) = BV (f) N o BV (f)
and
oMy, (f) = 0BV (f) N wBVo(f).

Theorem 2.1. For any modulus function f, the classes of sequence BV} (f), BV} (f), oMBpy. (f) and MLy, (f)
are the linear spaces.

Proof. We shall prove the result for the space BV(f). Rests will follow similarly.
For, let © = (1), ¥y = (yx) € BV.(f) be any two arbitrary elements and let a, 3 be scalars.
Now, since (zx), (yx) € BVI(f), then, there exists L1, Ly € C such that the sets

Alz{keN:if(¢m,k(x)—L1|)z;}ez (2.6)

m=0

and

Az{keN:gf(qsm,k(z)Lﬂ)zg}eJ (2.7).
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Since, f is modulus function, we have,
oo

5 f(|<a¢m,k<x>+ﬂ¢m,k<y>> (aLs + BLy) |

— )
m=0

m=0 m=0
SZ <¢mk +Zf(|¢mk L2|> (28)
m=0 =0

Therefore, by (2.6), (2.7) and (2.8), we have,

{keN Zf(| (0 >+ﬂ¢m,k<y>>—<aL1+ﬁLz>|)>e}c[Alqu]eI

implies that

{keN Zf( (Ao >+ﬂ¢m,k(y>>(aL1+5L2>|)ze}eL

But (), (yx) € BV(M) are the arbitrary elements
Therefore, axy, + Byr € BVI(f), for all (zx), (yr) € BV.I(f) and for all scalars o, 3
Hence, BV (f) is linear

Theorem 2.2. A sequence x = (z1) € Mpy, (f) I-converges if and only if for every e > 0, there exists N, € N
such that

{k eN: Z J(1Pmx(xr) — dmr(zn,)| <

m=0

e} e £(I) (2.9)
Proof. Let z = (z1) € Mpy, (f). Suppose that L = I —lim . Then, the set
B, = {k‘ eN: Z flomx(zr) — L]) < ;} € £(I), foralle>0.
m=0

Fix an N, € B.. Then we have

Z f(|¢>mk k) = Pmk(TN,)

m=0

)

<y f(¢mk (zn.) L|>
0

m=

+Zf(|L P,k ka)|><;+;=6

m=0

which holds for all k£ € B..
Hence

{(keN: ) f<¢m,k(x> — bmp(@n,)

m=0

) <e} e L£(I).

> < e} € £(I).

Then, being f a modulus function and by using basic triangular inequality, we have

{keN ‘Zf<|¢mkxk ) Zf<|¢mkx1v))‘<6}E£(I),f0ralle>0.

Conversely, suppose that

{k en: Y f(|¢>m,k(:ck) ~ bl

m=0
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Then, the set

F( dmpan) ) =€ Y f(l $mplan,) )+ e} € £(1)

0 m=0

M8

Co={keN: S F(l bmulan) ) €|

m=0

3
I

Let J. — [ 5 1 6malon) )= € 5 F(6malon) )+

If we fix an € > 0 then, we have C, e .,C( ) as well as Ce € £([).
Hence Cc N Cg € £(I). This implies that
J=J.NJs # ¢

That is -
(kenN:S f( | () |) e Iy e £,

m=0
That is
diamJ < diamJ,

where the diam of J denotes the length of interval J.
In this way, by induction we get the sequence of closed intervals

Jo=IgD20 2D D e,
with the property that diamIy < %diam[k_l for (k=2,3,4,.....) and

{k eN: Z f( | i (zr) | ) € I} € £(I) for (k=1,2,3,4,......).
Then there exists a & € NI, where k € N such that

_I—hme< | G ( xk)|>~

showing that « = (z1) € Mpy, (f) is I-convergent.
Hence the result.

Theorem 2.3. Let f; and f; be two modulus functions and satisfying As — Condition, then,

(a) X(f2) € X(f1f2)
(b) X(f1) N (f2) € X(f1 + fo) for X= BV}, BV}, oML, and ML,

Proof. (a) Let # = (z1) € ¢BV}(f2) be any arbitrary element. Then, the set

{keN: Zf2<|¢m,k(x)|> >e} el (2.10).
m=0

Let € > 0 and choose ¢ with 0 < § < 1 such that f1(t) <e, 0 <t <.

Write yy, = f2< | k() | > and consider

lim f1(yx) = k<h§HIlc Nf1(yk)+ s hémk o F1r)-
Now, since fi is a modulus function,
Therefore, we have

< 1 .
yk<h(SHIIcENf1(yk) f1(2) kghﬁeN(y’“) (2.11)

For yj, > J, we have y, < % <14 %
Now, since f; is non-decreasing, it follows that

Fil) < 1+ 4

1 ka
5)<§f1( )+ fl( )
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Again, since f; satisfies Ay — Condition, we have

filyr) < %K(Z’;—k) 1(2) + %K% 1(2)

Thus,
filyk) < K(yfsk)fl@)'
Hence,
yk>h§Hll<:€Nf1(yk) < max{1, K5 f1(2) kiigﬁlceN(yk) (2.12).

Therefore, from (2.10),(2.11) and (2.12), we have,

{keN:if1(yk)>e}€I

m=0

{kzeN: Zf1f2(¢,,L7k(x)> Ze} el
m=0

i.e.

implies that

x = (zx) €0 BV (fif2)-
Thus,
0BV} (f2) € 0BV} (f1f2)

Hence, X (f2) C X(f1f2) for XY= (BV/!
For X = BV} X= OMgVU and X' = Mpy: the inclusions can be established similarly.

(b) Let = = () € 0BV (f1) NoBV}.(f2). Let € > 0 be given. Then, the sets

{kGN mz:of1<|¢mk( )) - 2} GIa

{k eN: f2<| e ) > 2} €l
=0

{keN S (it f) <|¢m,k<x)|> >e}
m=0
- HkENZiﬁ(Wm,k(ﬂCH) 26}
m=0
U{IfENiZf2<|¢m,k($)|> 26}] el,
m=0

{kEN: Z(f1+f2)<¢m’k(z)|> ZG}EI

m=0

and

Therefore, the inclusion

implies that

Thus, x = (zx) € 0BV (f1 + f2)
Hence, ¢ BV, (f1) NoBVy (f2) € 0BV, (fi + f2)
For X = BV} X= oMévg and X = Mpy: the inclusions are similar.

For fa(z) = = and fi1(x) = M(z), for all x € [0,00), we have the following corollary.
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Corollary 2.4. X C X(f) for Y= (BV,, BV}, (M7}, and Mp,, .
Theorem 2.5. The spaces BV} (f) and oMy, (f) are solid and monotone.

Proof. We shall prove the result for ¢ BV} (f). For oM%y, (f), the result can be proved similarly.
For, let x = (z1) € o BV(f), then the set

{keN:if(@n’k(a:))Ze}el (2.13)

m=0

Let (ay) be a sequence of scalars with | o, |< 1 for all k& € N. Then, the result follows from (2.12) and the inequality

f( ‘ O‘k(ybm,k(z) ‘ ) §| (€75 | .f( | Qbm,k(x) | ) < f< | (bm,k(x) | )5 for all k € N.

The space is monotone follows from lemma(T). Hence the result.

Theorem 2.6. The spaces BV (f) and M pv1(f) are not neither solid nor monotone.

Proof. Here we give a counter example for the proof of this result.

Counter example. Let I = I; and f(z) =z for all z € [0, 00). Consider the K-step Zx of Z defined as follows.
Let (z1) € Z and let (yx) € Zx be such that

_ g, if kis even,
Y = 0, otherwise.

Consider the sequence (r},) defined as by z; = 1 for all K € N. Then (z) € BV!(f) and Mgy, (f) but its K-step
preimage does not belong to BV!(f) and Mgy, (f).

Thus, BV (f) and Mpy, (f) are not monotone. Hence BV!(f) and Mpy, (f) are not solid by lemma(I).
Theorem 2.7. The spaces BV (f) and (BV}(f) are sequence algebra.

Proof. Let (z = z;) and (y = yx) be two elements of ( BV (f) .

Then, the sets

{kENlif<|¢m’k(l‘)|>2€}€I

m=0
and
{keN: Zf<|¢m,k(y>|> ze} er
m=0
Therefore,

{keN:E:f<|@m“m¢mﬂw|>ze}eL

m=0

Thus, (zx).(yx) € 0BV.(f). Hence ¢ BV (f) is sequence algebra. For BV (f), the result can be proved similarly.
Theorem 2.8. If [ is not maximal and I # I, then the spaces BV (f) and BV} (f) are not symmetric.

Proof. Let A € I be an infinite set and f(x) = « for all z € [0, 00). If

[ 1, ifke A,
k= 0, otherwise.



26 Global Journal of Mathematical Analysis

Then, it is clear that (z) € o BV(f & BVI(f)
Let K C N be such that K ¢ T and N\ K ¢ [
Let ¢ : K — A and ¢ : K¢ — A€ be a bijective maps.Then,the mapping 7 :— N — N defined by

B o(k), ifke K,
m(k) = { vk, otherwise.

is a permutation on N
But (z.(k)) ¢ BV.(f) and hence (z,(k)) ¢ ¢BV.(f) showing that BV!(f) and (BV/!(f) are not symmetric se-
quence spaces.

Theorem 2.9. Let f be a modulus function.
Then, ¢BV(f) € BVE(f) C «BV}L(f) and the inclusions are proper.

Proof. The inclusion ¢ BV (f) C BV!(f) is obvious.
Next, let (zx) € BV(f). Then there exists L € C such that

{kEN:Zf<|¢’m,k(x)_L|> ZG}EI~
m=0

f<|¢m,k<x>|> §;f<|¢m,k<x>L|>+f(;L|)

Taking supremum over k on both sides, we get (x1) €. BVI(f)

Hence, o BV (f) C BV (f) C BV (f)

Next,we show that the inclusions are proper.

For, Let us consider I = I, f(z) = 22 for all x € [0,00). Consider the sequence (zj) defined by z; = 1. Then
(z1) € BV} (f) but (wx) & 0BV, (f)

We have

Again, consider the sequence (yi) defined by

| 2, ifkis even,
Yk 0, otherwise.

Then (yx) € o BV (f) but (yi) € BV, (f)
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