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Abstract

An ideal I is a family of subsets of positive integers N which is closed under taking finite unions and subsets of its
elements. In this paper we introduce some ideal convergent double interval valued numbers sequence spaces defined
by Orlicz function and study different properties of these spaces. We also establish some inclusion relations among
them.
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1 Introduction

Interval arithmetic was first suggested by Dwyer [2] in 1951. Development of interval arithmetic as a formal
system and evidence of its value as a computational device was provided by Moore [16] in 1959 and Moore and Yang
[17] in 1962. Further works on interval numbers can be found in Dwyer [3], Fischer [9] , Markov [15]. Furthermore,
Moore and Yang [18], have developed applications to differential equations.

Chiao in [1] introduced sequence of interval numbers and defined usual convergence of sequences of interval
number. Şengönül and Eryilmaz in [24] introduced and studied bounded and convergent sequence spaces of interval
numbers and showed that these spaces are complete metric space. Esi in [4], [5] introduced and studied strongly
almost λ−convergence and statistically almost λ−convergence of interval numbers and lacunary sequence spaces
of interval numbers, respectively. In [6], Esi and Hazarika introduced the difference classes of interval numbers.
Recently Esi [7] has studied double sequences of interval numbers.

A set consisting of a closed interval of real numbers x such that a ≤ x ≤ b is called an interval number. A
real interval can also be considered as a set. Thus we can investigate some properties of interval numbers, for
instance arithmetic properties or analysis properties. We denote the set of all real valued closed intervals by IR.
Any elements of IR is called closed interval and denoted by x. That is x = {x ∈ R : a ≤ x ≤ b} . An interval number
x is a closed subset of real numbers [1]. Let xl and xr be first and last points of x interval number, respectively.
For x1, x2 ∈IR, we have x1 = x2 ⇔ x1l

=x2l
,x1r=x2r . x1 + x2 = {x ∈ R : x1l

+ x2l
≤ x ≤ x1r + x2r} ,and if α ≥ 0,

then αx = {x ∈ R : αx1l
≤ x ≤ αx1r} and if α < 0, then αx = {x ∈ R : αx1r ≤ x ≤ αx1l

} ,

x1.x2 = {x ∈ R : min {x1l
.x2l

, x1l
.x2r , x1r .x2l

, x1r .x2r} ≤ x ≤ max {x1l
.x2l

, x1l
.x2r , x1r .x2l

, x1r .x2r}} .

In [16], Moore proved that the set of all interval numbers IR is a complete metric space defined by

d (x1, x2) = max {|x1l
− x2l

| , |x1r − x2r |} .

In the special case x1 = [a, a] and x2 = [b, b] , we obtain usual metric of R.
Let us define transformation f : N→ R by k → f (k) = x, x = (xk) . Then x = (xk) is called sequence of interval

numbers. The xk is called kth term of sequence x = (xk) . wi denotes the set of all interval numbers with real terms
and the algebraic properties of wi can be found in [1].

Now we give the definition of convergence of interval numbers:
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Definition 1.1 ([1])A sequence x = (xk) of interval numbers is said to be convergent to the interval number xo

if for each ε > 0 there exists a positive integer ko such that d (xk, xo) < ε for all k ≥ ko and we denote it by
limk xk = xo.

Thus, limk xk = xo ⇔ limk xkl
= xol

and limk xkr
= xor

.
The notion of I-convergence was initially introduced by Kostyrko, et. al [11] as a generalization of statistical

convergence (see [8],[23] ) which is based on the structure of the ideal I of subset of natural numbers N. Kostyrko,
et. al [12] gave some of basic properties of I-convergence and dealt with extremal I-limit points. Although an ideal
is defined as a hereditary and additive family of subsets of a non-empty arbitrary set X, here in our study it suffices
to take I as a family of subsets of N, positive integers, i.e. I ⊂ 2N, such that A∪B ∈ I for each A,B ∈ I, and each
subset of an element of I is an element of I.

A non-empty family of sets F ⊂ 2N is a filter on N if and only if Φ /∈ F , A ∩B ∈ F for each A,B ∈ F, and any
subset of an element of F is in F . An ideal I is called non-trivial if I 6= Φ and N /∈ I. Clearly I is a non-trivial
ideal if and only if F = F (I) = {N − A : A ∈ I} is a filter in N, called the filter associated with the ideal I. A
non-trivial ideal I is called admissible if and only if {{n} : n ∈ N} ⊂ I. A non-trivial ideal I is maximal if there
cannot exist any non-trivial ideal J 6= I containing I as a subset. Further details on ideals can be found in Kostyrko,
et.al (see [11]). Recall that a sequence x = (xk) of points in R is said to be I-convergent to a real number ` if
{k ∈ N : |xk − `| ≥ ε} ∈ I for every ε > 0 ([11]). In this case we write I − lim xk = `. Further details on ideal
convergence can be found in [22], [27]. The notion of I-convergence double sequence was initially introduced by
Tripathy and Tripathy (see [26]).

Let λ = (λm) be a non-decreasing sequence of positive numbers tending to ∞ such that

λm+1 ≤ λm + 1, λ1 = 1.

The generalized de la Vallée Poussin mean is defined by

tm(x) =
1

λm

∑

k∈Jm

xk,

where Jm = [m− λm + 1,m].
A sequence x = (xk) is said to be (V, λ)-summable to a number ` (see [14] ) if

tm(x) → `, as m →∞.

If λm = m, then (V, λ)-summability reduces to (C, 1)-summability. We write

[C, 1] =

{
x = (xk) | ∃ ` ∈ R, lim

m→∞
1
m

m∑

k=1

|xk − `| = 0

}

and

[V, λ] =

{
x = (xk) | ∃ ` ∈ R, lim

m→∞
1

λm

∑

k∈Jm

|xk − `| = 0

}

for the sets of sequences x = (xk) which are strongly Cesàro summable (see [10]) and strongly (V, λ)-summable to
`, i.e. xk → `[C, 1] and xk → `[V, λ], respectively.

Let λ = (λm) and µ = (µn) be two non-decreasing sequences of positive real numbers, each tending to∞ and such
that λm+1 ≤ ∆λm+1, λ1 = 1; µn+1 ≤ µn+1, µ1 = 1. Let Jm = [m−λm+1,m], Jn = [n−µn+1, n],Jmn = Jm×Jn

and Λ = λmn = λmµn.
We define the generalized double de la Vallée Poussin mean by

tmn(x) =
1

λmn

∑

(k,l)∈Jmn

xk,l.

Recall in [19],[13] that an Orlicz function M is continuous, convex, nondecreasing function define for x > 0 such
that M(0) = 0 and M(x) > 0. If convexity of Orlicz function is replaced by M(x + y) ≤ M (x) + M (y) then this
function is called the modulus function and characterized by Ruckle [21]. An Orlicz function M is said to satisfy
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∆2 − condition for all values u, if there exists K > 0 such that M(2u) ≤ KM(u), u ≥ 0. Subsequently, the notion
of Orlicz function was used to defined sequence spaces by Tripathy et al [25], Tripathy and Hazarika[28] and many
others.

An interval valued double sequence x = (xk,l) is said to be convergent in the Pringsheim’s sense or P -convergent
to an interval number xo, if for every ε > 0, there exists N ∈ N such that

d (xk,l, xo) < ε for k, l > N

(see[20]) and we denote it by P − limxk,l = xo , where d
(
xk,l, yk,l

)
is the Hausdorff distance between x = (xk,l)

and y =
(
yk,l

)
. The interval number xo is called the Pringsheim limit of x = (xk,l) . More exactly, we say that a

double sequence of interval numbers x = (xk,l) converges to a finite interval number xo if xk,l tends to xo as both
k and l tend to infinity independently of each another. We denote by c2 the set of all double convergent interval
numbers of double interval numbers.

The interval number double sequence x = (xk,l) is bounded if and only if there exists a positive number B such
that d(xk,l, 0) < B for all k and l. We shall denote all bounded interval number double sequences by l

2

∞. Let w2

denote the set of all double sequences of interval numbers.
Let p = (pi,j) be a double sequence of positive real numbers. If 0 < pi,j ≤ supi,j pi,j = H < ∞ and D =

max
(
1, 2H−1

)
, then for ai,j , bi,j ∈ R for all i, j ∈ N, we have

|ai,j + bi,j |pi,j ≤ D (|ai,j |pi,j + |bi,j |pi,j ) .

2 Main results

In this paper, we define new double sequence spaces for interval sequences as follows.
Let I be an admissible ideal of N × N. Let M be an Orlicz function and p = (pi,j) be a double sequence of

strictly positive real numbers. We introduce the following sequence spaces:

2w
I (Λ,M, p) =

{
x = (xi,j) :

{
(m,n) ∈ N× N : 1

λmn

∑
(i,j)∈Jmn

[
M

(
d(xi,j ,xo)

ρ

)]pi,j ≥ ε
}
∈ I,

for some ρ > 0, and xo ∈ IR

}
,

2w
I
o (Λ,M, p) =





x = (xi,j) :
{

(m,n) ∈ N× N : 1
λmn

∑
(i,j)∈Jmn

[
M

(
d(xi,j ,0)

ρ

)]pi,j

≥ ε

}
∈ I,

for some ρ > 0





2w
I
∞ (Λ,M, p) =





x = (xi,j) : ∃K > 0 s.t.

{
(m,n) ∈ N× N : 1

λmn

∑
(i,j)∈Jmn

[
M

(
d(xi,j ,0)

ρ

)]pi,j

≥ K

}
∈ I,

for some ρ > 0



 .

and

2w∞ (Λ,M, p) =
{

x = (xi,j) : supm,n
1

λmn

∑
(i,j)∈Jmn

[
M

(
d(xi,j ,0)

ρ

)]pi,j

< ∞, for some ρ > 0
}

.

The proof of the following result is a routine work, so we omit it.

Proposition 2.1 (a) 2w
I (Λ,M, p) ⊂ 2w∞ (Λ,M, p) ,

(b) 2w
I
o (Λ, M, p) ⊂ 2w∞ (Λ,M, p) .

Theorem 2.2 (a) If 0 < infi,j pi,j ≤ pi,j < 1, then 2w
I (Λ, M, p) ⊂ 2w

I (Λ,M) ,
(b) If 1 < pi,j < supi,j pi,j < ∞, then 2w

I (Λ,M) ⊂ 2w
I (Λ,M, p) ,

(c) If 0 < pi,j ≤ qi,j < ∞ and
(

qi,j

pi,j

)
is bounded, then 2w

I (Λ,M, p) ⊂ 2w
I (Λ,M, q) .

Proof. The first part of the result follows from the relation


(m,n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

M

(
d (xi,j , xo)

ρ

)
≥ ε





⊆


(m,n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M

(
d (xi,j , xo)

ρ

)]pi,j

≥ ε




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and the second part of the result follows from the relation



(m,n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M

(
d (xi,j , xo)

ρ

)]pi,j

≥ ε





⊆


(m,n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

M

(
d (xi,j , xo)

ρ

)
≥ ε



 .

This completes the proof.
The proof of the part three is easy, so omitted.

Theorem 2.3 (a) If 0 < infi,j pi,j ≤ pi,j < 1, then 2w
I
0 (Λ, M, p) ⊂ 2w

I
0 (Λ,M) ,

(b) If 1 < pi,j < supi,j pi,j < ∞, then 2w
I
0 (Λ,M) ⊂ 2w

I
0 (Λ,M, p) ,

(c) If 0 < pi,j ≤ qi,j < ∞ and
(

qi,j

pi,j

)
is bounded, then 2w

I
0 (Λ,M, p) ⊂ 2w

I
0 (Λ,M, q) .

Proof of the result follows from the Theorem 2.2.

Theorem 2.4 Let M1 and M2 be two Orlicz functions. Then

2w
I (Λ,M1, p) ∩ 2w

I (Λ,M2, p) ⊂ 2w
I (Λ,M1 + M2, p) .

Proof. Let (xi,j) ∈ 2w
I (Λ,M1, p) ∩ 2w

I (Λ, M2, p) . Then for every ε > 0 we have



(m, n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M1

(
d (xi,j , xo)

ρ1

)]pi,j

≥ ε



 ∈ I, for some ρ1 > 0

and


(m, n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M2

(
d (xi,j , xo)

ρ2

)]pi,j

≥ ε



 ∈ I, for some ρ2 > 0.

Let ρ = max {ρ1, ρ2} . The result follows from the following inequality

∑

(i,j)∈Jmn

[
(M1 + M2)

(
d (xi,j , xo)

ρ

)]pi,j

≤ D


 ∑

(i,j)∈Jmn

[
M1

(
d (xi,j , xo)

ρ1

)]pi,j

+
∑

(i,j)∈Jmn

[
M2

(
d (xi,j , xo)

ρ2

)]pi,j


 .

This completes the proof.

Theorem 2.5 Let M1 and M2 be two Orlicz functions. Then

2w
I (Λ,M1, p) ⊂ 2w

I (Λ, M2 ◦M1, p) .

Proof. Let inf pi,j = H0. For given ε > 0, we first choose ε0 > 0 such that max{εH
0 , εH0

0 } < ε. Now using the
continuity of M2 choose 0 < δ < 1 such that 0 < t < δ implies M2(t) < ε0. Let (xi,j) ∈ 2w

I (Λ,M1, p) . Now from
the definition of 2w

I (Λ, M1, p) , for some ρ > 0

A(δ) =



(m,n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M1

(
d (xi,j , xo)

ρ

)]pi,j

≥ δH



 ∈ I.
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Thus if (m,n) /∈ A(δ) then we have

1
λmn

∑

(i,j)∈Jmn

[
M1

(
d (xi,j , xo)

ρ

)]pi,j

< δH

⇒
∑

(i,j)∈Jmn

[
M1

(
d (xi,j , xo)

ρ

)]pi,j

< λmnδH

⇒
[
M1

(
d (xi,j , xo)

ρ

)]pi,j

< δH , for all i, j = 1, 2, 3 . . .

⇒M1

(
d (xi,j , xo)

ρ

)
< δ, for all i, j = 1, 2, 3 . . . .

Hence from above inequality and using continuity of M2, we must have

M2

(
M1

(
d (xi,j , xo)

ρ

))
< ε0, for all i, j = 1, 2, 3 . . . .

which consequently implies that
∑

(i,j)∈Jmn

[
M2

(
M1

(
d (xi,j , xo)

ρ

))]pi,j

< λmn max{εH
0 , εH0

0 } < λmnε

⇒ 1
λmn

∑

(i,j)∈Jmn

[
M2

(
M1

(
d (xi,j , xo)

ρ

))]pi,j

< ε.

This shows that

(m, n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M2

(
M1

(
d (xi,j , xo)

ρ

))]pi,j

≥ ε



 ⊂ A(δ)

and so belongs to I. This completes the proof.

Theorem 2.6 Let M1 and M2 be two Orlicz functions. Then
(a) 2w

I
0 (Λ,M1, p) ∩ 2w

I
0 (Λ,M2, p) ⊂ 2w

I
0 (Λ,M1 + M2, p) ;

(b) 2w
I
0 (Λ,M1, p) ⊂ 2w

I
0 (Λ, M2 ◦M1, p) .

The proof of the theorem follows from the Theorems 2.4 and 2.5.

Theorem 2.7 Let M1 and M2 be two Orlicz functions satisfying ∆2-condition. If β = limt→∞
M2(t)

t ≥ 1, then
(a) 2w

I
0 (Λ,M1, p) = 2w

I
0 (Λ,M2 ◦M1, p) ,

(b)2wI (Λ,M1, p) = 2w
I (Λ,M2 ◦M1, p) .

Proof. It is easy, so omitted.
Two non-negative functions f, g are called equivalent, whenever C1f ≤ g ≤ C2f, for some Cj > 0, j = 1, 2 and

in this case we write f ≈ g.
The following Theorem is a direct consequence of definition of equivalent mappings.

Theorem 2.8 Let M1 and M2 be two Orlicz functions such that M1 ≈ M2. Then Z(Λ,M1, p) = Z(Λ, M2, p), for
Z = 2w

I
0 , 2w

I , 2w
I
∞ and 2w∞.

A sequence space E is said to be solid (or normal) if (xk) ∈ E and for all sequence (αk) of scalars with |αk| ≤ 1,
for all k ∈ N implies (αkxk) ∈ E.

Let K = {k1 < k2 < ...} ⊆ N and E be a sequence space. A K-step space of E is a sequence spaceλE
K =

{(xkn) ∈ w : (kn) ∈ E}.
A canonical preimage of a sequence (xkn) ∈ λE

K is a sequence (yn) ∈ w defined as

yn =
{

xn, if n ∈ N;
0, otherwise

A canonical preimage of a step space λE
K is a set of canonical preimages of all elements in λE

K , i.e. y is in
canonical preimage of λE

K if and only if y is canonical preimage of some x ∈ λE
K .

A sequence space E is said to be monotone if it contains the canonical preimages of its step spaces.
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Lemma 2.9 Every normal space is monotone.

Theorem 2.10 The double sequence space 2w
I (Λ,M, p) , 2w

I
o (Λ,M, p) , 2w

I
∞ (Λ,M, p) and 2w∞ (Λ,M, p) are solid

as well as monotone.

Proof. We give the proof for only 2w
I
o (Λ,M, p) . The others can be proved similarly. Let x = (xi,j) ∈ 2w

I
o (Λ,M, p)

and (αi,j) be a scalar sequence such that |αi,j | ≤ 1 for all i, j ∈ N. Then for every ε > 0 we have



(m,n) ∈ N× N :

1
λmn

∑

(i,j)∈Jmn

[
M

(
d

(
αi,jxi,j , 0

)

ρ

)]pi,j

≥ ε





⊆


(m,n) ∈ N× N :

E

λmn

∑

(i,j)∈Jmn

[
M

(
d

(
xi,j , 0

)

ρ

)]pi,j

≥ ε



 ∈ I,

where E = max{1, |αk,l|H}. Hence (αx) ∈ 2w
I
o (Λ, M, p) . By Lemma 1, the space 2w

I
o (Λ, M, p) is monotone. This

completes the proof.

3 IΛ-convergence of interval numbers

Definition 3.1 A double sequence x = (xi,j) of interval numbers is said to be Λ-convergent to x0 ∈ IR if for every
ε > 0, there exists a positive integer N such that

d(tmn(x), x0) < ε for all m,n > N.

Definition 3.2 A double sequence x = (xi,j) of interval numbers is said to be IΛ-convergent to x0 ∈ IR if for
every ε > 0, the set

Kε(Λ) = {(m,n) ∈ N× N : d(tmn(x), x0) ≥ ε} ∈ I.

or equivalently

{(m,n) ∈ N× N : d(tmn(x), x0) < ε} ∈ F (I).

In this case we write IΛ − limx = x0.

Theorem 3.3 Let x = (xi,j) be a double sequence in IR. If Λ− lim x = x0, then IΛ − limx = x0.

Proof. Let Λ− limx = x0, then for every ε > 0, there exists N ∈ N such that

d(tmn(x), x0) < ε, for all m,n > N.

Therefore the set

B = {(m, n) ∈ N : d(tmn(x), x0) ≥ ε} ⊆ {(1, 1), (2, 2), ..., (N − 1, N − 1)} .

But,I being admissible, we have B ∈ I. Hence IΛ − lim x = x0.

Theorem 3.4 Sequential method IΛ is regular.

Proof. The proof follows from the fact that I is admissible and Theorem 3.3.
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[10] A. R. Freedman, J. J. Sember, M. Raphael, Some Cesàro-type summability spaces, Proc. London Math. Soc., 37(3)
(1978) 508-520.
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