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Abstract

It is shown that a Hausdorff topological vector space E is fuzzy normable iff its topology is a metrizable locally
convex topology. Subspaces, product and quotient spaces of fuzzy normed spaces are investigated. Also the notion
of the tensor product of two fuzzy normed norms is introduced and it is proved that the induced locally convex
topology coincides with the projective tensor product topology.
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1 Introduction

A notion of a fuzzy norm, on a real or convex linear space, was for the first time introduced by the author in [12].
Several other authors gave some other definitions of a fuzzy norm. In this paper we use a definition of a fuzzy
norm which is analogous, but not exactly the same, with the one used by T. Bag and S. K. Samanta in [2]. In our
definition, a fuzzy seminorm, on a vector space E, is a map N from E to the family D(R™) of all fuzzy subsets & of
R™ which are increasing, left continuous and such that £(0) = 0 and lim;—,o £(t) = 1. Each fuzzy seminorm N on
F induces a pseudometrizable locally convex topology 7 on E. This topology is Hausdorff iff IV is a fuzzy norm.
Several properties of the topology 7 are investigated. We prove that a Hausdorff topological vector space is fuzzy
normable iff it is metrizable and locally convex. We show that every continuous fuzzy seminorm on a subspace of
a locally convex space F has a continuous extension to all of E. For a complete fuzzy normed space F we give a
fixed point theorem which is analogous to the one that holds for contraction mappings on complete metric spaces.
We also show that a fuzzy normed space (E, N) is complete iff , for each sequence (z,,) of elements of E, for which
the supremum \/, @, _, N(z,) exists in D(R"), the series Y - | x,, converges in E. This result is analogous to
the one that characterizes the Banach spaces. For a fuzzy normed space (F, N) we give a necessary and sufficient
condition for a linear functional on (E, N) or a linear map from (E, N) to a locally convex space F', to be continuous.
We also give the Hahn Banach theorem for the continuous extensions of continuous linear functionals. Next we
study subspaces, product and quotient spaces of fuzzy normed spaces. For a sequence (E,,, N,,) of fuzzy seminormed
spaces, we define a fuzzy seminorm N on the cartesian product HZO:1 FE,, for which the corresponding locally convex
topology is the product topology. Finally, for (E, N1) and (F, Na) fuzzy seminormed spaces, we define the tensor
product fuzzy seminorm N = N; ® Ny on the tensor product F ® F' and show that 7y is the projective tensor
product of the topologies Tn, and Tas.

2 Preliminaries

Let D(R™) denote the family of all fuzzy subsets £ of RT = [0,00) which are increasing, left continuous and such
that £(0) = 0 and lim;_, », £(¢) = 1. For a non-negative real number r, we denote by 7 the element of D(R™) defined
by #(t) = 0, for t < r, and #(t) = 1 when ¢t > r. For £ € D(Rt) and r > 0, r¢ is defined by 7¢ = 0, when r = 0,
and (ré)(t) = &(r~t) if r > 0. We make D(R") into a directed set by defining &n iff £(t) > n(t) for all t > 0. For
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&,m € D(RT), the elements £ @ n and € ® i are defined by :

Edn(t) =sup{&(t1 An(te) : t =11 +ta},

0 ift =0,
§on(t) = { sup{€(s) An(t/s) s >0} if ¢ > 0.

For £ € D(R*) and p > 0 we define &P by £P(t) = £(t'/?). Clearly £€” € D(R*). We get easily the following
Lemma 2.1 1. (§0&)P =& o8.
2. §P1+;D2 — Epl ® 5102_
3. (é‘Pl )Pz — gmpz'
For &1, ...,&,, we define inductively
o1& = [BR116] @ &
We get easily that

Dr=1€k(t) = sup { N\ &rtr)  t = Ztk} :
k=1 k=1

Let A be a non-empty subset of D(RT). An element 7 of D(R™ is said to be an upper bound (resp. a lower
bound) of A if £ < n (resp. n < &) for all £ € A. Since 0 < £ for all £, A is always bounded from below. If &, is
defined by

§o(t) = sup{¢(t) : € € A},
then &, is the greatest lower bound of A and it is denoted by inf A or by A A.
Lemma 2.2 A non-empty subset A of D(R™) is bounded from above iff

lim 1&f4§(t) =1

t—o0 &

If A is such a set and if

no(t) = { 0 for t=0,
° SUPg« st infeca &(s), ift >0,
then n, is the smallest upper bound of A
Proof. If A has an upper bound 7, then infec 4 £(t) > 7(t) and hence

li inf £(t) = 1.
Jim inf £(t)

Conversely, assume that the condition is satisfied and define 7, as in the Lemma. Then 7, is clearly increasing and,
using the condition, lim;_, s 7,(t) = 1. Also 7, is left continuous. Indeed, suppose that 7,(t) > « > 0. There exists
0 < s < ¢t such that infec 4 £(s) > . If now s < t; < t, then 7,(t1) > «, which proves that 7, is left continuous.
Clearly 7, is an upper bound for A. Given any upper bound 7 and 7(t) > «, there exists 0 < s < t with n(s) > a.
Now 1o(t) > infee 4 £(s) > 1(s) > «, which proves that 7,(t) > n(t), for all ¢, and hence 1, < 7. Therefore 7, is the
smallest upper bound for A.

For a non-empty bounded subset A of D(RT), we will denote by sup A or by \/ A the least upper bound of A.
We omit the proof of the following easily established
Lemma 2.3 1. Forc>0 and &,1,&, € D(R™) we have
¢ @po1bp = gy cle and ¢ (§ON) = (c§) O =EO (cn).

2. Fort ¢ >0 and p > 0, we have (c€)P = cPEP.

3. For a family {& i € I} of elements of D(RTY), ¢ > 0 and £ € D(RY), we have

C~/\§i:/\6&7 f@/\fi:/\f@fi-

iel iel i€l
4. If {& i € I} is a bounded family of elements of D(RY), ¢ > 0 and £ € D(RY), then

coVea=Veag o \Vea=Ve

7 iel iel
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3 Fuzzy seminorms, fuzzy norms

A fuzzy seminorm, on a vector space E over K, K = Ror C,is a map N : E — D(R") such that :
1. (FN1): N(0) = 0.
2. (FN2): N(z+y) 2 N(z)® N(y).
3. (FN3): N(cx)(t) = N(z)(t|e|™!) for each non-zero scalar c.
We will denote N (x)(t) by N(x,t).
Lemma 3.1 Let N be a fuzzy seminorm on E, t >0 and ) < a < 1. Then then set
Wia ={z: N(z,t) > a}
is absolutely convex and absorbing. Moreover Wy o = tW1 4.

Proof Clearly Wy o = tWj o. So it suffices to prove that W = W, , is absolutely convex and absorbing. If z € W
and |¢| < 1, then cx = 0 € W, if ¢ = 0, while for ¢ # 0, we have N(cx,1) = N(|c|') > N(z,1) > « which implies
that cx € W. Also W is convex. Indeed, let z,y € W, 0<t <1, z =tz + (1 —t)y. Then

N(z,1) > N(tz,t) AN((1 —=t)y,1 —t) = N(z,1) AN(y,1) > «

and so z € W. Finally, given x € E, there exists s > 0 such that N(z,s) > « and so x € sW, which completes the
proof.
We get easily the following

Lemma 3.2 Lett; >0, 0< a; <1,i=1,2, ¢t = min{ty,t2}, @ = max{ay,az}. Then Wi o C Wi, 0y [1Wis.as-

In view of lemmas 2.2 and 2.3, the family of all W; o, t > 0, 0 < o < 1, is a base at zero for a locally convex
topology 7 on E. We will denote by ¢, = ¢o,n the Minkowski functional of the set W1 q, i.e

go(z) = inf{t > 0: N(z,t) > a}.

For t > 0, the Minkowski functional of W;, coincides with ¢~'g,. Hence 7y is the topology generated by the
seminorms q,, 0 < a < 1.

Lemma 3.3 For 0 < o < 1, we have ¢, = infgs4 gg.

Proof . It is clear that ¢, < gg when a < . On the other hand, let ¢,(z) < ¢t < 1. There exists 0 < s < ¢ such
that € sWq 4, L.e. N(z,s) > . If N(z,s) > 8 > «, then gg(xr) < s < t. The lemma clearly follows.

If 0<a1<...<a,71, then, for each 0 < a < 1, there exists an n with a < a,, and so g, < qq,,. Hence 7n
is generated by a countable family of seminorms and therefore it is pseudometrizable.

Lemma 3.4 7y is metrizable iff N is a fuzzy norm.

Proof . Suppose that 7n is metrizable and hence Hausdorff. Given a non-zero element z of E, there exists ¢ > 0
and 0 < o < 1 such that ¢ W, 4, i.e N(z,t) < a which implies that N(z) # 0 and so N is fuzzy norm. The
converse also follows easily.

Lemma 3.5 Let N be a fuzzy seminorm on E, t >0, 0 < a < 1. Then:
1. N(z,t) > a < qu(t) < t.

N(z,t) = sup{f : gs(x) < t}.

N(z,tT) > a & supg., qp(z) <t

{z: N(x,t) > o} = Nocpea{r s qp(x) <t}

If go(z) =t, then N(z,t) = a iff ga(z) <t for each 0 < 5 < a.

S Svoh o e

If N(z,t) = a, then qo(z) =t iff N(x,s) > « for all s > t.
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Proof . (1) If qo(z) < t, then q,(t 'x) < 1 and so t 'z € Wy 4, i.e. N(z,t) = N(t~'z),1) > a. Conversely assume
that N(z,t) > a. Choose < s < t with N(z,s) > a. Then g,(z) < s <t.

(2) It follows easily from (1).

(3)Suppose that N(z,t") > « and let 8 < a. For s > ¢, we have N(z,s) > a > 3 and so gz(z) < s. This, being
true for each s > t, implies that gg(z) < ¢, for all 0 < 8 < a and thus d = supg,, gs(v) < t. Conversely, assume
that d <t and let s > t. Then, for § < «, we have gg(z) < s and therefore N(z,s) > . Since this holds for each
B > «, we get that N(z,s) > . It follows that N(z,t%) > a.

(4) and (6) follow from (1) while (5) follows from (1) and (4). For Ny, Ny fuzzy seminorms on E, the following are
equivalent.:

1. Ni(z) < Na(z) for all z € E.
2. ga.ny L qa,n, forall 0 <o < 1.
Corollary 3.6 For N a fuzzy seminorm on E, t >0 and 0 < oo < 1, the set Wy o is open.

Example 3.7 Let E be a non-trivial normed space. For x € E, define N(z) on [0,00) by

_ i,
N(x’t)—{ 0 ift<|al.
Then N is a fuzzy norm on E and go.n = || - || for all 0 < o < 1. In this case we have

A={z: N(z,t) <1} ={z: ||z]| > t}
and so A is not open.

Theorem 3.8 Let {p, : 0 < a < 1} be an increasing family of seminorms on a vector space E over K and, for
x € B, define
N(z): Rt —[0,1], N(x,t)=sup{a:ps(x) <t}

(the supremum over the empty family is taken to be zero). Then :

1. N is a fuzzy seminorm and, for 0 < a < B <1, we have py < ¢o,n < pg.

2. Pa = qa,N, for all o, iff po = infgsa ps.
3. Tn is the topology generated by the seminorms p,.

4. N is a fuzzy norm iff sup,, pa(x) > 0 for all x # 0.

Proof . It is clear that N(x) is increasing and N(cz,t) = N(z,|c|~'t) when ¢ # 0. Let N(x,t) > a > 0, where
t > 0. There exists @ < § < 1 such that pg(z) < t. Let 0 < s < t be such that pg(z) < s. Then N(z,s) > 5 > a,
which proves that N(z) is left continuous. Suppose now that N(x,t) A N(y,s) > « > 0. There exists 8 > « such
that pg(z) < t, pg(y) < s and so pg(z+vy) < pg(x)+pp(y) < t+s, which implies that N(z+y,t+s) > > «. This
proves that N(z +y) = N(z) ® N(y). Finally, lim;_,.c N(z,t) = 1. In fact, let 0 < a < 1 and s > p,(z). For t > s
we have N(xz,t) > «, which proves our claim. So N is a fuzzy seminorm. It is easy to see that N is a fuzzy norm iff
sup,, Pa(z) > 0 for all © # 0. Next we show that for 0 < a < 8 < 1, we have po, < ¢o,n < ¢g. Indeed, if g, n(2) < 1,
then N(z,t) > . There exists v > o with p,(z) < t and so ps(z) < py(x) < t. This proves that p, < go,n. Also,
for s > pg(x), we have N(z,s) > 8 > « and hence g, n(2) < s, which proves that ¢, n(z) < pg(x). Thus

< < inf pg.
Pa > qa,N > B>ap6

(2) follows from (1) and from Lemma 3.4 while (3) follows from (1).

Example 3.9 Let X be a topological space, (E, N) a fuzzy normed space and G = Cyp(X, E) the space of all bounded
continuous E-valued functions on X. For f € G, we define

Neo(f) = \/ N(f(2)).

zeX

Then Noo s a fuzzy norm on G for which Tn_ coincides with the topology of uniform convergence.



Global Journal of Mathematical Analysis 87

Example 3.10 Let (r,)5%; be an increasing sequence of continuous seminorms, on a locally convex space E, such
that sup,, r,(z) = 0o for each © # 0. Take ro = 0. For 0 < a < 1, there exists a unique positive integer n such that

(n—1)/n<a<n/(n+1).

Take po, = rn—1. Then (pa) is an increasing family of continuous seminorms on E. Consider the fuzzy seminorm
N defined by

N(z,t) =sup{a : pa(x) < t}.

Then Ty coincides with the topology generated by the seminorms ry. This topology is clearly Hausdorff and thus N
s a fuzzy norm.

In the above example, for each x € E and each ¢t > 0, we have that either N(z,t) € {0,1}} or N(z,t) =n/(n+1)
for some positive integer n. Indeed, assume that N(x,t) # 0,1. Then = # 0. There exists a unique positive integer
n such that r,_1(x) <t < rp(x). Let 0 < a<1l. If(n—-1)/n < a <n/(n+1), then py(x) = rp_q(z) < t. If
a>n/(n+1)and (m—1)/m < a <m/(m+1), then n < m — 1, which implies that p,(z) = rpm_1(z) > rp(z) > t.
It follows that N(z,t) = n/(n + 1) and so the claim is true. Let

V={z:N(t)>n+1)/(n+2)

Using the claim we get that V = {x : N(z,¢) > n/(n+ 1)} and so V is open. The set V is not empty since it
contains 0. If r,_; # 0, then V # E. Indeed, assume that V = E. Then, for « = n/(n+ 1) and y € E =V,
we have N(y,t) > a and hence ¢, (y) < t. This, being true for all y € E, r,—1 = po < g0 = 0, a contradiction.
Therefore, for r,_1 # 0, we have that V is a non-empty proper subset of E which is open and hence not closed
since every non-trivial topological vector space is connected.

We will say that a topological vector space F is fuzzy normable if there exists a fuzzy norm N on FE such that
T coincides with the topology of E. A Hausdorff topological vector space F is fuzzy normable iff it is locally
convex and metrizable.  Proof . We have shown that the condition is necessary. for the necessity, suppose that
E is locally convex and metrizable. Then, there exists an increasing sequence (r,) of continuous seminorms on FE
such that, for each continuous seminorm p on F the exists an n with p < r,. As in the preceding example, there
exists a fuzzy norm N on F such that 7 coincides with the topology generated by the seminorms r,,, n =1,2,....
This latter topology is the topology 9f F.

4 Some properties of fuzzy seminormed spaces

Let (E, N) be a fuzzy seminormed space and A C E. Then :
1. For a net (zs) in E, we have that lims N(xs —z,t) =1 for all ¢ > 0

2. A is Tn-bounded iff N(A) is bounded in D(R™), which is equivalent to

lim inf N(z,t) = 1.

t—oox€eA

3. An element x of E belongs to the closure A of A iff /\yEA N(z—1y) = 0, which is equivalent to sup{N (z —y, ) :
ye A} =1forallt>0

4. z belongs to the interior A° of A iff /\ygA N(z —y) # 0, which is equivalent to supyga N(z —y,t) <1 for
some t > 0.

5. If A is non-empty and proper subset of F, then
zEA,y¢ A

which is equivalent to
sup{N(z —y,t):x € A,y¢ A} =1

for each ¢ > 0.
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Proof . (1) Suppose that s — x and let ¢ > 0. The set W; 4 is a neighborhood of zero in E. Thus, there exists J,
such that x5 —x € Wy o, i.e. N(xzs—x,t) > «, for all 6 > d,, which proves that lims N (x5 —x,t) = 1. The converse
follows analogously.
(2) Assume that A is bounded and let ) < ao < 1. There exists ¢ > 0 such that A C tW 4. Thus, for z € A, we
have N(z,t) > «, which clearly proves that lim; o inf,c 4 N(z,t) = 1. The proof of the converse is analogous.
(3) Suppose that * € A and let t > 0. Given 0 < a < 1, there exists y € A such that z —y € W,,, ie.
N(z —y,t) > a. Hence sup,c4 N(z —y,t) = 1. The converse follows in an analogous way.
(4) Assume that x € A°. Since A° is the complement of the closure A¢ of A° = E \ A, we have that x ¢ Ac. In
view of (3), there exists ¢t > 0 such that

sup N(z —y,t) < 1.

ygA

The converse again follows from (3).

(5) Assume that A # (), E. If OA is the boundary of A, then A = A°UJA. Now A cannot be empty. Indeed, if A
were empty, then A = A = A° and so A would be both open and closed which cannot be true since F is connected.
Let now z € 9A = AN A¢. Since z € A, there exists by (3) an x € A such that N(x — z,t/2) > a. Similarly, since
z belongs to the closure of A°, there exists y ¢ A such that N(z — y,t/2) > a. Now

N(x—y,t) > N(x — z,t/2) AN(z — y,t/2) > a,
which completes the proof.
Theorem 4.1 For a non-empty subset A of a seminormed space (E, N), the following are equivalent :
1. A is totally bounded.

2. Given t > 0, there exist x1, -+, x, tn A such that

j N(z —x1,1) > a.
mfxeAlrgnlggn (x —ap,t) >«

3. Givent > 0, there exist x1,---,x, in E such that
. _ >a
nfrea lrgnl?gn N(z — zg,t) > «
Proof . (1) = (2) Suppose that A is totally bounded and let £ > 0,0 < o < 1. The set W; 4 is a neighborhood of zero
and hence there exists a finite subset S = {x1,- -+, 2, } in A such that A C S W, . If now x € A, then z—x), € Wy 4,
for some 1 < k < n, and hence N(x — xj,t) > a. This proves that inf,c 4 maxij<p<, N(z — x5, 1) > o

3) = (1) Lett >0and 0 < o < 1. Let 0 < @ < 8 < 1. By (3), there are 1 ---,x —n in E such that
maxi<k<n N(T — xg,t) > ( for all z € A. Hence, given x € A, there exists k such that

z—z €V ={y:N(y,t) > 5} C Wi,
Thus A C {z1, -, 2n} + Wi,q, which completes the proof.
Theorem 4.2 For a fuzzy normed space (E, N), the following are equivalent
1. There exists 0 < a < 1 such that lim;_,o inf{N(z,t) : N(x,t) > a} =1
2. There exists 0 < oo < 1 such that Tn is generated by the seminorm g, n (in this case ¢o,nN 15 a norm).
Corollary 4.3 If (E, N) is finite dimensional fuzzy normed space, then there exists 0 < o < 1 such that

tliglo{]\/'(x,t) : N(z,t) >a} =1.

Proof The topology 7n is Hausdorff. But every finite dimensional Hausdorff topological vector space is normable.
Hence the result follows from the preceding theorem.

Lemma 4.4 Let f be a linear functional on a fuzzy seminormed space (E;,N). Fort > 0 and 0 < a1, the following
are equivalent :

1. Ifx € E and qo(z) < 1, then |f(z)| < 1.
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N(z,t|f(x)) < a forallx € E.

Proof . (1) = (2). Clearly N(z,t|f(z)) < aif f(x) = 0. Suppose that f(x) # 0 and let y = f(y). Then |f(y)| = 1.
By our hypothesis (1) we have that ¢, (y) > t, i.e. ¢o(z) > ¢|f(z)], which proves that N(z,¢|f(z)) < a (by lemma
2.6))

(2) = (1). If go(x) < t, then N(x,t) > a, which (by our hypothesis (2)) implies that t|f(z)l, ¢, i.e. |f(x)| < 1, and
the lemma follows.

Theorem 4.5 A linear functional f on a fuzzy seminormed space (E,N) is continuous iff there exists t > 0 such
that

sup{N(z,t|f(z)))x € E} < 1.

Hence f is continuous iff there aret >0 and 0 < a < 1 such that N(z,t|f(x)]) <« forallz € E
Proof . Suppose That f is continuous. Then, there exist 0 < o < 1 and 0 < ¢ |f(x)] < 1 when go(z) < t. Then
sup{N(z,t|f(x)])x € E} < 1.

Conversely, let t > 0 be such that
sup N(z,t|f(z)]) < a < 1.
el

By the preceding lemma, |f(z)| < 1 when g, (x) < t and so { is continuous. The result now clearly follows.
With an analogous proof we prove the following

Theorem 4.6 Let (E,N) be a fuzzy seminormed space and F' be a locally convex space. Then a linear T : (E, N) —
f is continuous iff, for each continuous seminorm p on F there exists t > 0 there exists 0 < a < 1 such that
N(z,tp(Tz)) < « for allz € E.

We also have the following

Theorem 4.7 Let (E,N) be a fuzzy seminormed space and let H be a subset of the dual space of E. Then H is
equicontinuous iff there exists t > 0 such that

sup{N(z,t|fz|):x € E.f € H} < 1.

Theorem 4.8 Let N1, No,---, N, be fuzzy seminorms on a vector space E. For x € E) define N(z) = ®}_, Ni(z).
Then N is a fuzzy seminorm and qa,N = ZZ=1 Qo Ny -

Proof . It easy to show that N is a fuzzy seminorm. Suppose that g, n(z) > t. Then N(z,t) > a. There are
t > 0, Y p_; tx = t, such that mini<x<nNi(x,tx) > @.Then go n, () < tx and Y ;_; ga,n, (2) < t. This proves
that go,n => > p_; da,N, = d. On the other hand let d < s. There are s > 0 such that qqs, (2) < sk, Y p_q SkS-
Then Ni(zx) > a N(z,t) > A%_; Ni(z, s;) > o, which implies that ¢, v (z) < d. This proves that g, n(z) < d and
the result follows.

Theorem 4.9 (Hahn Banach) Let F be a subspace of a fuzzy norm space (E, N) and let f be a linear functional on
F such that, for sot >0 and some 0 < o < 1 we have N(x,t|f(x)|) < o for all x € F. Then there exists a linear
extension g of f such that N(x,t|g(z)|) < o for all x € E.

Proof . By lemma 3.5 our hypopthesis is equivalent to |f(z)| < 1 when g,(z) < 1. Set

Il = sup{lf(2)] : @ € F,qa(z) <1} = sup{|f(2)| : ga(2) <1} <t71.

Thus |g(z)| < t7'qa(z) for all z € F. By the Hahn Banach Theorem there exists a linear extension g of f such
that |g(z)| < t71gq ( ) for all z € E. If now 2 € E and ¢u(z) < t, then |g(z)] < 1. In view of lemma 3.5 we get
N(z,t|g(z)|) < afor all z € E.

Next we give a fixed point theorem analogous to the one that holds for metric spaces. We will need the following

Lemma 4.10 If & € D(R™T) is such that £c€ for some 0 < ¢ < 1, then € = 0. Also (¢1€) @ (c26)(c1 + e2)E.
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Proof . By induction we have that {c"¢ for each positive integer n. For ¢ >0 (t) > lim{(c™"¢) = 1. Thus §(t) =1
for all ¢ > 0 and hence £ = 0. Let s > 0, s = 81 + s2 and ¢ = ¢1 + ¢c3. We cannot have that s;/cy, s3/ca > s/ec.
Thus

(c€)(s) = &(s1/c1) NE(s2/c2) = (c1§)(s1) A (e2€)(s2).
Thus ¢1& @ coéck

Definition 4.11 A fuzzy Banach space is a fuzzy normed space (E,N) for which (E,Tn)is complete.

Theorem 4.12 (A fized point theorem) Let (E,N) be a fuzzy Banach space and let f : E — E be a function for
which there exists 0 < ¢ < 1 such that N(f(x) — f(y))cN(z —y)) for all x,y € E. Then f has a unique fizved x.
Moreover if 21 is any element of E and xy,11 = Ty, then (x,) converges to x.

Proof .The proof is analogous to the one for complete metric spaces. First observe that f is uniformly continuous.
Indeed, given t > 0 and 0 < « < 1, take s = ¢~ t. If x —y € W, 4, then

N(f(z) = f(y),t) 2 N(z —y,s) >«
which proves that f is uniformly continuous. Now by induction we get that
N(Zpy1 — 2p)N (29 — 1) = "€
For m > n, we have
N(zpm — 23) S5 Nz — ap) S5 (™ - e™)Ec ™ (1 = ).

It follows that (z,) is Cauchy and thus z,, x, for some z,. Since f is continuous, we have that f(x,) — f(z,). But
f(xn) = x,. Hence f(z,) = z,, i.e. x, is a fixed point. Finally, suppose that z,y are fixed points for f and let
n = N(x —y). Then nN(f(z) — f(y))eN(x — y)) = £ and hence n = 0, by the preceding lemma. Tt follows that
x —y =0 since N is a fuzzy norm which competes the proof.

Theorem 4.13 For a sequence (), in a fuzzy seminormed space (E,N), the following are equivalnet:
1. &= N, ®y_; N(xy) exists in D(RT).
2. For each 0 < a < 1 we have that Y~ | ga(zy) < 00.

Proof . (1) = (2). Let 0 < o < 1. There exists ¢ > 0 such that {(¢) > a. There exists 0 < s < ¢ such that
nn(s) > a, for all n, where 1, = ®}_; N(zy) Given n, there exist s; such that Y | sy = s and N(zy,sk) > a.
Hence gq(z1) < si and s0 >} qa(z%) < s < t. This proves that Y.~ ga(zn) < t.

(2) = (1). It suffices show that , for n, = ®7_, N(xx), we have that

lim infn,(t) = 1.

t—oo n

So, let 0 < a < 1. By our hypothesis (2), there exists s such that

[ee]

an(xk) < s < o0.

1
For a given n, there exist s1,-- -, s, such that g, (z) < si and >} s < s. Now N(zy, si) > a and hence

n
Mn(s) > /\ N(xg, si) > a.
k=1
Thus inf,, 1, (s) > « which proves that lim;_, ., 7, (¢) = 1. This completes the proof.
Theorem 4.14 For a sequence (), in a fuzzy seminormed space (E, N), the following are equivalent :
1. The sup, N@®_, N(zj) ezists in D(RT).

2. For each 0 < o < 1 we have that Y ;| qo(xy) < 00.
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Proof. (1) = (2). Let £ = \,, @® N(zy and O < 1. There exists ¢ such that inf, [, _, N(xx)] > o. Given n, there
are t1,- - -, t, such that Y | ¢tx = ¢t and N(z,tx) > a for all n. Now go(xx) < ¢ and so Y| ga(zx) < t. This proves

that > 1% qa(zk) < t.
(2) = (1). Assume that sup,, A @)_; N(zx). There exists 0 < a < 1 such that

Sltlp[i%f BTN (z1)](t) < .

Choose t > Y17 ga(zy). There exists a sequence (t,,) such that ¢, <t and gq(z,) < ¢, for all n. Now, for each

[é N(xk)] (t) > /n\ N(zg, tr) > a.
k=1

k=1

)

This roves that

t>0 ™

sup inf l@ N(xk] t)=1
1
and so A\, @,_, N(z} exists.

Lemma 4.15 For a metrizable locally convexr space E the following are equivalent:

1. If (zy) is a sequence in E such that Y.~ p(xy,) < 0o for every continuous seminorm p on E, then the series
>0 | T is convergent.

2. E is complete.

Proof . (2) = (1). Suppose that the condition for a sequence (z,,) in E. L:et y,, = > ;_, z%. For p € ¢s(E) and
m > n, we have that p(ym — yn) < >0, p(zx) — 0 when n — co. Thus (y,) is is Cauchy and hence convergent.
(1) = (2). Since F is metrizable, there exists an increasing sequence (p,) of continuous seminorms on F such
that, for each p € cs(E), the exists an n such that p < p,,. Let (z,,) be a Cauchy sequence E. Choose an indices
ny < ng < ---such that py(z, — 2,,) < 1/2F for all n,m > ny. Consider the series Given p € cs(E), choose k, such
that p < k,. Then

(e’ ko
> oy = plyr) + Y puk)-
k=1 k=1 k>ko

But for k > k,, we have p(yx) < pr(yx) < 1/2F. Thus
ko
> plyk) < plyr) + D 278 < o0
k=1 k>ko

Now by our hypothesis the series Yy, converges in E. For each m we have z,, = Z;n: Yk = Tn,,. S0 (zm) is a
convergent subsequence of (z,). Since (x,) is Cauchy, it follows that it converges and the proof is complete.

Theorem 4.16 For a fuzzy normed space (E, N), the followig are equivalent:
1. (E,N) is complete.

2. For every sequence (x,) in E, for which the element &€ =\/, @_, N(zy) exists in D(RY), the series Y x,
converges in E.

Proof. For each 7n continuous seminorm there exists 0 < o < 1 and ¢ > 0 such that p < ¢p,. Now result follows
from the preceding lemma and the theorem 3.15 .

5 Subspaces, product and quotient spaces

let F' be a subspace of a fuzzy seminormm space. Define Ng to be the restriction of N to F'. Then Np is a fuzzy
seminorn on F. Meoreover, For 0 < a < 1 and x € F, we have

Go,Np () inf{t : t > 0, Np(x,t) > a} = inf{t : N(z,t) > a} = go.n ().

Hence the topology induced on F' by the seminorm Np coincides with the topology of F' as a subspace of (E, 7).
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Definition 5.1 A fuzzy seminorm N, on a topological vector space E, is said to be continuous if the induced topology
TN 18 coarser than the topology of E.

It is well known that, if F' is subspace of F, then each continuous seminorm on F' has a continuous extension
on all f E. In the next theorem we will show that the same happens for fuzzy continuous seminorms.

Theorem 5.2 Let F be a subspace of a locally convexr space E and let N be a continuous fuzzy fuzzy seminorm on
F. Then :

1. There exists a continuous fuzzy seminorm N’ on E such that N = N’ on F.
2. For each 0 < oo < 1 we have that go N () = qo,n'(z) for z € F.
3. If I is dense, then N’ is unique.

Proof . Let ap =0< 03 < - <o, T1 For0<a<1,let go =qq,n. Let p, be the zero seminorm on E. For n
a positive integer, there exists a continuous seminorm 7, on E such that 7, = g, on F. Let p, = V-V r,.
Then p,, is a continuous seminorm on E. For x € F', we have

pn(x) = max ri(z) = MAX o (T) = G, ).

Also pp < pm if n < m. For 0 < a < 1, there exists a unique m such that «,,_1 < a < q,,. Define

oa(r) = inf{qa(y) +pm(zr —y):y € F}

for x € E. Then o, is a seminorm on E. Indeed, 04(0) < g4(0) + pn(0) = 0. For ¢ # 0, we have

a(2) = inf{ga(y) + pm(cr —y) 1y € F} = inf{ga(cy) + pm(cr —cy) 1y € F}

el i0f{galy) + pm(z - 9) : y € F} = [eloa(2)

To prove that the triangle inequality, let t; > 04 (x), t2 > 04(2). There are y;,y2 in F such that q4(y1) + pm € F
and so

0a(2+2) < qa(y) + P2+ 2 =) < Ga(y1) + da(y2) + Pm(x — y1) + pm(z —y2) <t1 + 1o
This shows that o, (2 + 2) < 04(2) + 04(2) and therefore o, is a seminorm on E. Moreover 4(z) < ¢o(0) 4 pm ()

and hence o is continuous. For y € F', we have

70(7) < qa(y) + ¢a(z = Y) < qa(¥) + da,, (T —Y) = @a(y) + Pm(z —Y).

Thus g (2) < 04(z). On the other hand, o4(x) < go(x) + Pm(0) = go(x) and hence o, (z) = ¢u(z). For a < 8, we
have that 0, < 0g. Indeed, let o1 < @ < g, 1 < B <. Then a1 < a < B <y andsom —1 < n,
which implies that m < n and therefore o, < og. Now define, for € E, N'(z,t) = sup{a : go(z) < t}. Then N’ is
a fuzzy seminorm on E. For 0 < o < 1, we have

0 (2) < ga,n'(2) < 0p(2).

Thus ¢, N is continuous on E and hence N’ is continuous. Moreover N(z) = N'(z) for € F. Indeed, for x € F,
we have
N'(z,t) = sup{a : o4 (x) < t} = sup{a : qo(x) < t} = N(z,1).

Thus N = N’ on f. As we have seen in the beginning of the section we have that g, n)—g,,n7 on F. Finally,
suppose that F' is dense and let Ny, N2 be continuous extensions of N. Since gu,n,; Ga,N, are ontinuous on E we
have that ¢, N, = ga,n, Which proves that N; = N,. This complets the proof.

Theorem 5.3 Let E, F be linear spaces and let T : E — F be a linear map. Let N be a fuzzy seminorm on F.
Define
N' =T YN):E— D(R"),N'(z) = N(Tz).

Then N' is a fuzzy seminorm on E and qo,n' = T (qa,N)-
Proof . It is easy to see that N’ is a fuzzy seninorm.Moreover, for x € E,

Gon'(z) = Inf{t : N'(x,t) > a} = inf}{t : N(Tz,t) > a} = go.n(Tx).
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Corollary 5.4 If E is a topological vector space, T : E — F' a linear map and N a fuzzy seminorm on F, then
T :— (F,7xn) is continuous iff T~Y(N) is a continuous seminorm on E.

Theorem 5.5 Let (E,N) a fuzzy seminorm space and F a subspace Define

No:E/F = D(R"),No(z + F)+ [\ N(z+y)/.
yeF

Then
1. N, is a a fuzzy seminorm on E/F.
2. For 0 < o <1, we have ga,n,(x + F) + infyecr ¢o,n(z + y).
8. N, is a fuzzy norm iff F' is Tn-closed in E.
Proof . (1). For t > 0, we have N,(x + F,t) = sup,cr qa,n(z +y). It is easy to see that, for ¢ # 0, we have

No(m + F’t) = No(x + F, t/|C|)

If
N0($+F,t1) /\No(y+F,t2) >a >0,

there exist y1,y2 € F such that N(z + y1,t1) A N(y + ya2,t2) > « and so
No(x+y+Fti+12) > N +y+yi +y2,t1 +t2) > N(@+y1,t1) AN(Y +y2,t2) > a,
which proves that N,(z 4+ y + F)Ny(z + F) @ No(y + F). So N, is a fuzzy seminorm. Next we show that

do.N,(x + F) = inf g4 n(x + ).
yeF

Indeed, if go,n,(x + F) < t, then N,(z + F,t) > o and hence N(z + y,t) > «, for some y € F, which implies that
do,N(xz +y) < t. This proves tha
d = lgg qa,N(-T + y) S qoz,NO (1’ + F)
y

On the other hand, let ¢t > d. There exists y € F with ¢, ~(z 4+ y) <t and so N(z + y,t) > a. Therefore
Noy(x+F) > N(z +y,t) > «

which implies that g, n,(z + F) < t. This proves that ¢, n,(z + F) < d. Finally, if F is closed and z € F = F,
then(by theorem 3.1) there exists ¢ > 0 such that

No(z+ F) =sup{N(x —y,t) : y € F} >0,

which implies N,(z + F) # 0 and so N, is a fuzzy norm. Conversely assume that N, is a fuzzy norm. Then, given
x ¢ F there exists 0 < o < 1 such that g, n,(x + F) >t > 0. Now

sup N(z —y,t) = No(z+ F,t) <a <1
yel

and hence x ¢ F, which proves that F' is closed. This completes the proof.

Theorem 5.6 Let (Ey, Ni), k=1,---,n, be a finite family of fuzzy seminormed spaces and let E = [[;_, Ex. For
x = (uy, - ,up) in E, we define
N(z) = ®r_y Ni(ur).

Then:
1. N is a fuzzy seminorm on E.
2. QQ,N(I) = 2221 qo, Ny, (Uk)

3. tn is the product topology.
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4. N is a fuzzy norm iff each Ny is a fuzzy norm.

Proof . Using an argument analogous to the one used in theorem 3.9, we get that IV is a fuzzy seminorm and that
Ga,N(T) = 3 F_ qa,N, (ug). Assume that each Ny is a norm. If z = (uy,---,u,) is not the zero element, then
uy, # 0 for some k. Since Ny is a norm, go n, (ux) # 0, for some 0 < a < 1, and so g, n(x) # 0, which proves that
N is a fuzzy norm. On the other hand, suppose that some N; is not a fuzzy norm. There exists v # 0 such that
Nj(u) = 0. Let z = (uy, -, uy,) with u, = 0, for k # j, and u; = u. Then N(x) =0 and hence N is not a fuzzy
norm. Since 7y is clearly the product topology, the result follows.

Theorem 5.7 Let (E,, N,,) be a sequence of fuzzy seminorm spaces and let E = [[7_, E,. For 0 < a < 1. define
Tan(T) = D71 Ga.ne (ug) for @ = (ug) € E. Let a, =n/(n+1). For1/(n+1) <1—a < 1/n, take po = o, n-
Then {ps : 0 < a < 1} is an increasing family of fuzzy seminorms on E. If

N(z,t)=sup{a: po(z) <t}
(the supremum over the empty family is taken to be zero), then :
1. N is a fuzzy seminorm on E.
2. N(@,t) = sup{n/(n+1) : ra, n(@) < t} = sup{n/(n+ 1) : [D}_, Ne()] (1) > n/(n + 1)}
8. TN coincides with the product topology.

4. N is a fuzzy norm iff each N is a fuzzy norm.

Proof . Ttis clear isa seminormon E. f0 < a< <1, (n=1)/n < a <n/(n+1) and (m—1)/m < < m/(m+1),
then n < m and hence a,, < a,,,, which implies that

Da = Tann < Tay,m = DB-

It follows that N is a fuzzy seminorm on F. Since for each 0 < oo < 1 we have hat p, = rq,, » for some n, it follows
that

N(z,t) =sup{n/(n+1) : rq, n < t}.
Claim. 7, »(z) < [Br_; Ne(ur)] (t) > n/(n+1).

Indeed, suppose that rq,, »(z)<t. Then there are ty, qu, n(ur) < tp and Y ,_; tx < t. Hence Ni(ug) > ay, for
k=1,---,n, and so

éNk(uk)] (t) > \ Ni(un, te) > o
k=1

Conversely, assume that [®}_; Ny (ug)](t) > ay,. There are tx, > p_y tk = t, Ni(ug,tg) > . Thus o, v, (ur) <tk
and therefore r,,, ,,(z) < > p_, tx = t. Hence (2) follows.
(3). Let (2%)sen be anet in E, 2° = (us,). If 2% — 0 in the product topology, then us, — 0 for each k, and so

n
Tan,n(xé) = ZQQme (us,) = 0,
k=1

which proves that 2° — 0 in the topology 7. Conversely, suppose that 2° — 0 in the topology 7y and let 0 < o < 1
and k be given. Choose n > k such that n/(n+ 1) > «. Now

o,y (U5,) < Qo N, (Us,) < Tap () = 0.

This clearly proves that 2% — 0 in the product topology.

(4) Tt follows from the fact that a fuzzy seminorm is a fuzzy norm iff the corresponding topology is Hausdorff
together with the well known property that the cartesian product of non-empty topological spaces is Hausdorff iff
each factor is Hausdorff.
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6 Tensor products of fuzzy norms

Let N1, Ny be fuzzy seminorms on the vector spaces E, F', respectively. Define N = N; ® N5 on the tensor product
E®F by

N(u) = M@y Ni(ex) @ No(ye) :u =Y r @ yi}
k=1

where the infimum is taken over the family of all possible representations u = > ,_, zx ® y, of u € E® F. We
claim that N is a fuzzy seminorm on g = E ® F.

(FN1) If u =0 = 0® 0, then N(u) < N1(0) ® No(0) = 0 and so N(u) = 0.

(FN3) Let ¢ # 0. Then [N1(z) ® Na(y)] (t) = supy~o Na(y, s) A Ni(ts™1) =

supgso Na(y, 8) A Ni(c ta, |e]71t/s) = [N1(c™tx) ® Nao(y)](|c|~*t). Now

N(cu,t) = sup{[®j_1 N1(zx) © N2 (y)]( U—Zxk D Yk }-

For cu = 22:1 T Dy and zp = ¢ 'xy, we have u = ZZ:I 2k @ yg- Thus

@7y N1 () © Na(r) (£) = sup{AN: (1) © Na(ye)] () - £ = Sopy te)

= sup{A[N1(2x) ® Na(yx)](|c| k). Therefore

N{eu,t) = sup{[&f_, N1 (z%) © Na(yr))(lel~12) : u = 3 21 ® i}

= N(u, |¢|~1t).

(FN2) We have that N(u+v,t+s) = N(u,t) AN(y,s). In fact, let N(u,t) AN(y,s) > a. There are representations
w= Y, o ®yp and v = Y 2 @y such that £(t) An(s) > o, where £ = @}_ Ni(zr) © No(yr), 1 =
S N (2) © Na(yi). Now & n = S0y Ny(ax) © Noye) and €@ 1 > (€® n)(t +5) > . This proves that
N(u+v) < N(u) ® N(v) and claim follows.

Theorem 6.1 For 0 < a < 1 we have that qo,n (1) = ga.N, D Ga,N,-
Proof . Suppose that g, n(u) < t. Then N(u,t) > a. There exists a representation u = ZZH g @ yi such that
[©k=1N1(zk) © Na(ys)] (t) > a.

Now there are 5, > ,_, tx =t such that

/\ Ni(2k) © Na(ye)](t) > a.

For each k, there exists s; with Ny (zg, sg) A N2(yk), tr/sk) > a. Now

Ga,N, (T1) < Sk, Ga,N, (Yr) < ti/5k

and therefore go N, (T1)qa, N, (Yr) < ti, which implies that

n
Ga,Ny D Ga,n, (U Z%Nl Tk ) o, N2 (Yi) <Ztk—t
k=1 k=1

Conversely, suppose ¢o,N, P da,N,(u) < t. There exists a representation
u =34, Tk ® yx such that

n

Z qa, N, (xk)Qa,Nz (yk) <t.
k=1

Now, there is € > 0 such that, for ty = € + ga,n, (Tk), Sk = € + qa,n, (Ur), We > _p_; tisk < t. Then Ny(xy,ty) > «
Nao(yk, sx) > «, and so

[y N1(zr) © Na(yn)](t) = [Bf_ N1(2k) © Na(yi) X tesw)

> Apei[Ni(zk) © No(ye)](tkse) = Ajeq N1(zk, ti) No(yk, si) > . The result clearly follows.

Corollary 6.2 For allx € E, y € F we have

o N(Z R Y) = Ga, Ny, @ Ga,N, (T R Y) = Go, N, (X)Ga, N, (Y)-
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In view the theorem., 7y coincides with the projective tensor product topology.
Theorem 6.3 N(z ® y) = N1(z) © Na(y).

Proof . By the definition of N, we have that N(z ® y) = Ni(z) ® Na(y). On the other hand, suppose that
N(z ® y,t) > a. Then go,n(z ® ¥) = ga,N, (%)ga,N,(y) < t. There are t1 > qa,n, (), t2 > qa,n,(y) such that
tita < t. Then Ny(z,t1) > o and Na(y,t2) > «, and so Ni(z) ® Na(y)(t) > a. This clearly completes the proof.

Theorem 6.4 Ny @& Ny = N is the biggest of all fuzzy seminorms N’ such that N'(x x y) < N1(x) ® Na(y) for all
reFE, yelF.

Proof . Suppose that N'(z ® y) < N'(z) ® N'(y) for all (z,y). If u =), _, 2 @ yi, then

n

N'(u) = @D N' (@ @ yx) = D Ni(ax) © Na(yy)-
k= k=1

It follows from this that N'(u) < N(u) for all u, as it was to be proved.
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